Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems
The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms infl...
Gespeichert in:
Veröffentlicht in: | Estuarine, coastal and shelf science coastal and shelf science, 2015-01, Vol.152, p.A1-A8 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A8 |
---|---|
container_issue | |
container_start_page | A1 |
container_title | Estuarine, coastal and shelf science |
container_volume | 152 |
creator | Hendriks, Iris E. Duarte, Carlos M. Olsen, Ylva S. Steckbauer, Alexandra Ramajo, Laura Moore, Tommy S. Trotter, Julie A. McCulloch, Malcolm |
description | The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (∼0.3–0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3–0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units.
In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.
[Display omitted]
•pH fluctuations in coastal regions are larger than trends of ocean acidification.•Metabolically intense habitats increase ΩAr by high productivity.•Calcification is controlled by biological processes.•We summarize the mechanisms for biological control of calcification. |
doi_str_mv | 10.1016/j.ecss.2014.07.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669848594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272771414002066</els_id><sourcerecordid>1669848594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-5642c41f4c0e69f44ec179cbd12661e3e69c59e1f434612d9ba4fa521b5df87a3</originalsourceid><addsrcrecordid>eNqNkEFr3DAQhUVpoNtN_kBOPvZiRyNL8hpyaULbFBZ6SSA3oR2PN1psy_VoC_n30XZzLj0NPL7vwTwhrkFWIMHeHCpC5kpJ0JVsKgntB7EC2dpSSjAfxUqqRpVNA_qT-Mx8yCmYWq3E812IQ9wH9EMxEr74KfDIBR_nOS4pTPvCd35OPoU4FSkWEclPhcfQhT5Lf-MwFRg9p1xBGPmVE418KS56PzBdvd-1ePr-7fH-odz--vHz_uu2RKNtKo3VCjX0GiXZtteaEJoWdx0oa4HqHKJpKQO1tqC6dud1742Cnen6TePrtfhy7p2X-PtInNwYGGkY_ETxyA6sbTd6Y1r9P6hWsqmlyag6o7hE5oV6Ny9h9MurA-lOi7uDOy3uTos72bi8eJZuzxLlf_8EWhxjoAmpCwthcl0M_9LfAFtqiwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664207305</pqid></control><display><type>article</type><title>Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems</title><source>Elsevier ScienceDirect Journals</source><creator>Hendriks, Iris E. ; Duarte, Carlos M. ; Olsen, Ylva S. ; Steckbauer, Alexandra ; Ramajo, Laura ; Moore, Tommy S. ; Trotter, Julie A. ; McCulloch, Malcolm</creator><creatorcontrib>Hendriks, Iris E. ; Duarte, Carlos M. ; Olsen, Ylva S. ; Steckbauer, Alexandra ; Ramajo, Laura ; Moore, Tommy S. ; Trotter, Julie A. ; McCulloch, Malcolm</creatorcontrib><description>The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (∼0.3–0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3–0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units.
In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.
[Display omitted]
•pH fluctuations in coastal regions are larger than trends of ocean acidification.•Metabolically intense habitats increase ΩAr by high productivity.•Calcification is controlled by biological processes.•We summarize the mechanisms for biological control of calcification.</description><identifier>ISSN: 0272-7714</identifier><identifier>EISSN: 1096-0015</identifier><identifier>DOI: 10.1016/j.ecss.2014.07.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acidification ; Biological ; Biological interactions ; Brackish ; Calcification ; Coastal ; Ecosystems ; Habitats ; Homeostasis ; Ocean acidification ; Oceans ; Organisms ; pH variability</subject><ispartof>Estuarine, coastal and shelf science, 2015-01, Vol.152, p.A1-A8</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-5642c41f4c0e69f44ec179cbd12661e3e69c59e1f434612d9ba4fa521b5df87a3</citedby><cites>FETCH-LOGICAL-c546t-5642c41f4c0e69f44ec179cbd12661e3e69c59e1f434612d9ba4fa521b5df87a3</cites><orcidid>0000-0002-2238-6018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0272771414002066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hendriks, Iris E.</creatorcontrib><creatorcontrib>Duarte, Carlos M.</creatorcontrib><creatorcontrib>Olsen, Ylva S.</creatorcontrib><creatorcontrib>Steckbauer, Alexandra</creatorcontrib><creatorcontrib>Ramajo, Laura</creatorcontrib><creatorcontrib>Moore, Tommy S.</creatorcontrib><creatorcontrib>Trotter, Julie A.</creatorcontrib><creatorcontrib>McCulloch, Malcolm</creatorcontrib><title>Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems</title><title>Estuarine, coastal and shelf science</title><description>The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (∼0.3–0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3–0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units.
In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.
[Display omitted]
•pH fluctuations in coastal regions are larger than trends of ocean acidification.•Metabolically intense habitats increase ΩAr by high productivity.•Calcification is controlled by biological processes.•We summarize the mechanisms for biological control of calcification.</description><subject>Acidification</subject><subject>Biological</subject><subject>Biological interactions</subject><subject>Brackish</subject><subject>Calcification</subject><subject>Coastal</subject><subject>Ecosystems</subject><subject>Habitats</subject><subject>Homeostasis</subject><subject>Ocean acidification</subject><subject>Oceans</subject><subject>Organisms</subject><subject>pH variability</subject><issn>0272-7714</issn><issn>1096-0015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkEFr3DAQhUVpoNtN_kBOPvZiRyNL8hpyaULbFBZ6SSA3oR2PN1psy_VoC_n30XZzLj0NPL7vwTwhrkFWIMHeHCpC5kpJ0JVsKgntB7EC2dpSSjAfxUqqRpVNA_qT-Mx8yCmYWq3E812IQ9wH9EMxEr74KfDIBR_nOS4pTPvCd35OPoU4FSkWEclPhcfQhT5Lf-MwFRg9p1xBGPmVE418KS56PzBdvd-1ePr-7fH-odz--vHz_uu2RKNtKo3VCjX0GiXZtteaEJoWdx0oa4HqHKJpKQO1tqC6dud1742Cnen6TePrtfhy7p2X-PtInNwYGGkY_ETxyA6sbTd6Y1r9P6hWsqmlyag6o7hE5oV6Ny9h9MurA-lOi7uDOy3uTos72bi8eJZuzxLlf_8EWhxjoAmpCwthcl0M_9LfAFtqiwc</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Hendriks, Iris E.</creator><creator>Duarte, Carlos M.</creator><creator>Olsen, Ylva S.</creator><creator>Steckbauer, Alexandra</creator><creator>Ramajo, Laura</creator><creator>Moore, Tommy S.</creator><creator>Trotter, Julie A.</creator><creator>McCulloch, Malcolm</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2238-6018</orcidid></search><sort><creationdate>20150101</creationdate><title>Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems</title><author>Hendriks, Iris E. ; Duarte, Carlos M. ; Olsen, Ylva S. ; Steckbauer, Alexandra ; Ramajo, Laura ; Moore, Tommy S. ; Trotter, Julie A. ; McCulloch, Malcolm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-5642c41f4c0e69f44ec179cbd12661e3e69c59e1f434612d9ba4fa521b5df87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acidification</topic><topic>Biological</topic><topic>Biological interactions</topic><topic>Brackish</topic><topic>Calcification</topic><topic>Coastal</topic><topic>Ecosystems</topic><topic>Habitats</topic><topic>Homeostasis</topic><topic>Ocean acidification</topic><topic>Oceans</topic><topic>Organisms</topic><topic>pH variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendriks, Iris E.</creatorcontrib><creatorcontrib>Duarte, Carlos M.</creatorcontrib><creatorcontrib>Olsen, Ylva S.</creatorcontrib><creatorcontrib>Steckbauer, Alexandra</creatorcontrib><creatorcontrib>Ramajo, Laura</creatorcontrib><creatorcontrib>Moore, Tommy S.</creatorcontrib><creatorcontrib>Trotter, Julie A.</creatorcontrib><creatorcontrib>McCulloch, Malcolm</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Estuarine, coastal and shelf science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendriks, Iris E.</au><au>Duarte, Carlos M.</au><au>Olsen, Ylva S.</au><au>Steckbauer, Alexandra</au><au>Ramajo, Laura</au><au>Moore, Tommy S.</au><au>Trotter, Julie A.</au><au>McCulloch, Malcolm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems</atitle><jtitle>Estuarine, coastal and shelf science</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>152</volume><spage>A1</spage><epage>A8</epage><pages>A1-A8</pages><issn>0272-7714</issn><eissn>1096-0015</eissn><abstract>The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (∼0.3–0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3–0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units.
In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.
[Display omitted]
•pH fluctuations in coastal regions are larger than trends of ocean acidification.•Metabolically intense habitats increase ΩAr by high productivity.•Calcification is controlled by biological processes.•We summarize the mechanisms for biological control of calcification.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ecss.2014.07.019</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2238-6018</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-7714 |
ispartof | Estuarine, coastal and shelf science, 2015-01, Vol.152, p.A1-A8 |
issn | 0272-7714 1096-0015 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669848594 |
source | Elsevier ScienceDirect Journals |
subjects | Acidification Biological Biological interactions Brackish Calcification Coastal Ecosystems Habitats Homeostasis Ocean acidification Oceans Organisms pH variability |
title | Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20mechanisms%20supporting%20adaptation%20to%20ocean%20acidification%20in%20coastal%20ecosystems&rft.jtitle=Estuarine,%20coastal%20and%20shelf%20science&rft.au=Hendriks,%20Iris%20E.&rft.date=2015-01-01&rft.volume=152&rft.spage=A1&rft.epage=A8&rft.pages=A1-A8&rft.issn=0272-7714&rft.eissn=1096-0015&rft_id=info:doi/10.1016/j.ecss.2014.07.019&rft_dat=%3Cproquest_cross%3E1669848594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664207305&rft_id=info:pmid/&rft_els_id=S0272771414002066&rfr_iscdi=true |