High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries

Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2015, Vol.273, p.210-215
Hauptverfasser: KIM, Ju-Sik, CHANG, Won-Seok, KIM, Ryoung-Hee, KIM, Dong-Young, HAN, Dong-Wook, LEE, Kyu-Hyoung, LEE, Seok-Soo, DOO, Seok-Gwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue
container_start_page 210
container_title Journal of power sources
container_volume 273
creator KIM, Ju-Sik
CHANG, Won-Seok
KIM, Ryoung-Hee
KIM, Dong-Young
HAN, Dong-Wook
LEE, Kyu-Hyoung
LEE, Seok-Soo
DOO, Seok-Gwang
description Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ray diffraction analysis indicates that the resulting MnO sub(2) consists of multiple phases, [lambda]-MnO sub(2), alpha -MnO sub(2), and beta -MnO sub(2), depending on the leaching time in acid solution. Upon the first charge-discharge cycle in acetonitrile electrolyte, the [lambda]-MnO sub(2) based electrode shows larger reversible capacity of ~330 mAh g super(-1) compared to an electrode containing a large amount of alpha -MnO sub(2). This enhanced capacity is associated with the facile charge-transfer reaction of Mg ions at the MnO sub(2)/electrolyte interfaces. The capacity fading of MnO sub(2) in different electrolytes is also discussed in terms of the formation of a surface layer at the electrode/electrolyte interface during the charging process.
doi_str_mv 10.1016/j.jpowsour.2014.07.162
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669846364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1655733398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-94c944bdd74fb7a32592cad9fe84eeb5a7fe8e722fc5ef84c13544f78c18ca353</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-BelF8NKazyY9ivgFghc9h2k62c3SbdakRf33Vlw9e3rn8Dwzw0vIOaMVo6y-2lSbXXzPcUoVp0xWVFes5gdkwYwWJddKHZIFFdqUWitxTE5y3lBKGdN0QexDWK1LBztwYfwsBhhiHtPkxilhV2xhWMGAGYsuxI_QYeFgXMc5fUxFQreGtEJoe5zR1QyGaVuEOBQtjCOmgPmUHHnoM57tc0le725fbh7Kp-f7x5vrp9JJZcayka6Rsu06LX2rQXDVcAdd49FIxFaBnifUnHun0BvpmFBSem0cMw6EEkty-bN3l-LbhHm025Ad9v38fpyyZXXdGFmLWv4DVUoLIRozo_UP6lLMOaG3uxS2kD4to_a7fLuxv-Xb7_It1bPPZ_FifwOyg94nGFzIfzY3jaBSMfEFm8aKlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655733398</pqid></control><display><type>article</type><title>High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>KIM, Ju-Sik ; CHANG, Won-Seok ; KIM, Ryoung-Hee ; KIM, Dong-Young ; HAN, Dong-Wook ; LEE, Kyu-Hyoung ; LEE, Seok-Soo ; DOO, Seok-Gwang</creator><creatorcontrib>KIM, Ju-Sik ; CHANG, Won-Seok ; KIM, Ryoung-Hee ; KIM, Dong-Young ; HAN, Dong-Wook ; LEE, Kyu-Hyoung ; LEE, Seok-Soo ; DOO, Seok-Gwang</creatorcontrib><description>Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ray diffraction analysis indicates that the resulting MnO sub(2) consists of multiple phases, [lambda]-MnO sub(2), alpha -MnO sub(2), and beta -MnO sub(2), depending on the leaching time in acid solution. Upon the first charge-discharge cycle in acetonitrile electrolyte, the [lambda]-MnO sub(2) based electrode shows larger reversible capacity of ~330 mAh g super(-1) compared to an electrode containing a large amount of alpha -MnO sub(2). This enhanced capacity is associated with the facile charge-transfer reaction of Mg ions at the MnO sub(2)/electrolyte interfaces. The capacity fading of MnO sub(2) in different electrolytes is also discussed in terms of the formation of a surface layer at the electrode/electrolyte interface during the charging process.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.07.162</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Applied sciences ; Cathodes ; Direct energy conversion and energy accumulation ; Electric batteries ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Electrolytes ; Exact sciences and technology ; Fading ; Magnesium ; Manganese dioxide ; Materials ; Nanostructure ; Rechargeable batteries</subject><ispartof>Journal of power sources, 2015, Vol.273, p.210-215</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-94c944bdd74fb7a32592cad9fe84eeb5a7fe8e722fc5ef84c13544f78c18ca353</citedby><cites>FETCH-LOGICAL-c458t-94c944bdd74fb7a32592cad9fe84eeb5a7fe8e722fc5ef84c13544f78c18ca353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28930451$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KIM, Ju-Sik</creatorcontrib><creatorcontrib>CHANG, Won-Seok</creatorcontrib><creatorcontrib>KIM, Ryoung-Hee</creatorcontrib><creatorcontrib>KIM, Dong-Young</creatorcontrib><creatorcontrib>HAN, Dong-Wook</creatorcontrib><creatorcontrib>LEE, Kyu-Hyoung</creatorcontrib><creatorcontrib>LEE, Seok-Soo</creatorcontrib><creatorcontrib>DOO, Seok-Gwang</creatorcontrib><title>High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries</title><title>Journal of power sources</title><description>Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ray diffraction analysis indicates that the resulting MnO sub(2) consists of multiple phases, [lambda]-MnO sub(2), alpha -MnO sub(2), and beta -MnO sub(2), depending on the leaching time in acid solution. Upon the first charge-discharge cycle in acetonitrile electrolyte, the [lambda]-MnO sub(2) based electrode shows larger reversible capacity of ~330 mAh g super(-1) compared to an electrode containing a large amount of alpha -MnO sub(2). This enhanced capacity is associated with the facile charge-transfer reaction of Mg ions at the MnO sub(2)/electrolyte interfaces. The capacity fading of MnO sub(2) in different electrolytes is also discussed in terms of the formation of a surface layer at the electrode/electrolyte interface during the charging process.</description><subject>Applied sciences</subject><subject>Cathodes</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric batteries</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Exact sciences and technology</subject><subject>Fading</subject><subject>Magnesium</subject><subject>Manganese dioxide</subject><subject>Materials</subject><subject>Nanostructure</subject><subject>Rechargeable batteries</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-BelF8NKazyY9ivgFghc9h2k62c3SbdakRf33Vlw9e3rn8Dwzw0vIOaMVo6y-2lSbXXzPcUoVp0xWVFes5gdkwYwWJddKHZIFFdqUWitxTE5y3lBKGdN0QexDWK1LBztwYfwsBhhiHtPkxilhV2xhWMGAGYsuxI_QYeFgXMc5fUxFQreGtEJoe5zR1QyGaVuEOBQtjCOmgPmUHHnoM57tc0le725fbh7Kp-f7x5vrp9JJZcayka6Rsu06LX2rQXDVcAdd49FIxFaBnifUnHun0BvpmFBSem0cMw6EEkty-bN3l-LbhHm025Ad9v38fpyyZXXdGFmLWv4DVUoLIRozo_UP6lLMOaG3uxS2kD4to_a7fLuxv-Xb7_It1bPPZ_FifwOyg94nGFzIfzY3jaBSMfEFm8aKlQ</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>KIM, Ju-Sik</creator><creator>CHANG, Won-Seok</creator><creator>KIM, Ryoung-Hee</creator><creator>KIM, Dong-Young</creator><creator>HAN, Dong-Wook</creator><creator>LEE, Kyu-Hyoung</creator><creator>LEE, Seok-Soo</creator><creator>DOO, Seok-Gwang</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2015</creationdate><title>High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries</title><author>KIM, Ju-Sik ; CHANG, Won-Seok ; KIM, Ryoung-Hee ; KIM, Dong-Young ; HAN, Dong-Wook ; LEE, Kyu-Hyoung ; LEE, Seok-Soo ; DOO, Seok-Gwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-94c944bdd74fb7a32592cad9fe84eeb5a7fe8e722fc5ef84c13544f78c18ca353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied sciences</topic><topic>Cathodes</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric batteries</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Exact sciences and technology</topic><topic>Fading</topic><topic>Magnesium</topic><topic>Manganese dioxide</topic><topic>Materials</topic><topic>Nanostructure</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, Ju-Sik</creatorcontrib><creatorcontrib>CHANG, Won-Seok</creatorcontrib><creatorcontrib>KIM, Ryoung-Hee</creatorcontrib><creatorcontrib>KIM, Dong-Young</creatorcontrib><creatorcontrib>HAN, Dong-Wook</creatorcontrib><creatorcontrib>LEE, Kyu-Hyoung</creatorcontrib><creatorcontrib>LEE, Seok-Soo</creatorcontrib><creatorcontrib>DOO, Seok-Gwang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, Ju-Sik</au><au>CHANG, Won-Seok</au><au>KIM, Ryoung-Hee</au><au>KIM, Dong-Young</au><au>HAN, Dong-Wook</au><au>LEE, Kyu-Hyoung</au><au>LEE, Seok-Soo</au><au>DOO, Seok-Gwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries</atitle><jtitle>Journal of power sources</jtitle><date>2015</date><risdate>2015</risdate><volume>273</volume><spage>210</spage><epage>215</epage><pages>210-215</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ray diffraction analysis indicates that the resulting MnO sub(2) consists of multiple phases, [lambda]-MnO sub(2), alpha -MnO sub(2), and beta -MnO sub(2), depending on the leaching time in acid solution. Upon the first charge-discharge cycle in acetonitrile electrolyte, the [lambda]-MnO sub(2) based electrode shows larger reversible capacity of ~330 mAh g super(-1) compared to an electrode containing a large amount of alpha -MnO sub(2). This enhanced capacity is associated with the facile charge-transfer reaction of Mg ions at the MnO sub(2)/electrolyte interfaces. The capacity fading of MnO sub(2) in different electrolytes is also discussed in terms of the formation of a surface layer at the electrode/electrolyte interface during the charging process.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.jpowsour.2014.07.162</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2015, Vol.273, p.210-215
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1669846364
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cathodes
Direct energy conversion and energy accumulation
Electric batteries
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Electrolytes
Exact sciences and technology
Fading
Magnesium
Manganese dioxide
Materials
Nanostructure
Rechargeable batteries
title High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-capacity%20nanostructured%20manganese%20dioxide%20cathode%20for%20rechargeable%20magnesium%20ion%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=KIM,%20Ju-Sik&rft.date=2015&rft.volume=273&rft.spage=210&rft.epage=215&rft.pages=210-215&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.07.162&rft_dat=%3Cproquest_cross%3E1655733398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1655733398&rft_id=info:pmid/&rfr_iscdi=true