High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries
Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ra...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2015, Vol.273, p.210-215 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | |
container_start_page | 210 |
container_title | Journal of power sources |
container_volume | 273 |
creator | KIM, Ju-Sik CHANG, Won-Seok KIM, Ryoung-Hee KIM, Dong-Young HAN, Dong-Wook LEE, Kyu-Hyoung LEE, Seok-Soo DOO, Seok-Gwang |
description | Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ray diffraction analysis indicates that the resulting MnO sub(2) consists of multiple phases, [lambda]-MnO sub(2), alpha -MnO sub(2), and beta -MnO sub(2), depending on the leaching time in acid solution. Upon the first charge-discharge cycle in acetonitrile electrolyte, the [lambda]-MnO sub(2) based electrode shows larger reversible capacity of ~330 mAh g super(-1) compared to an electrode containing a large amount of alpha -MnO sub(2). This enhanced capacity is associated with the facile charge-transfer reaction of Mg ions at the MnO sub(2)/electrolyte interfaces. The capacity fading of MnO sub(2) in different electrolytes is also discussed in terms of the formation of a surface layer at the electrode/electrolyte interface during the charging process. |
doi_str_mv | 10.1016/j.jpowsour.2014.07.162 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669846364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1655733398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-94c944bdd74fb7a32592cad9fe84eeb5a7fe8e722fc5ef84c13544f78c18ca353</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-BelF8NKazyY9ivgFghc9h2k62c3SbdakRf33Vlw9e3rn8Dwzw0vIOaMVo6y-2lSbXXzPcUoVp0xWVFes5gdkwYwWJddKHZIFFdqUWitxTE5y3lBKGdN0QexDWK1LBztwYfwsBhhiHtPkxilhV2xhWMGAGYsuxI_QYeFgXMc5fUxFQreGtEJoe5zR1QyGaVuEOBQtjCOmgPmUHHnoM57tc0le725fbh7Kp-f7x5vrp9JJZcayka6Rsu06LX2rQXDVcAdd49FIxFaBnifUnHun0BvpmFBSem0cMw6EEkty-bN3l-LbhHm025Ad9v38fpyyZXXdGFmLWv4DVUoLIRozo_UP6lLMOaG3uxS2kD4to_a7fLuxv-Xb7_It1bPPZ_FifwOyg94nGFzIfzY3jaBSMfEFm8aKlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655733398</pqid></control><display><type>article</type><title>High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>KIM, Ju-Sik ; CHANG, Won-Seok ; KIM, Ryoung-Hee ; KIM, Dong-Young ; HAN, Dong-Wook ; LEE, Kyu-Hyoung ; LEE, Seok-Soo ; DOO, Seok-Gwang</creator><creatorcontrib>KIM, Ju-Sik ; CHANG, Won-Seok ; KIM, Ryoung-Hee ; KIM, Dong-Young ; HAN, Dong-Wook ; LEE, Kyu-Hyoung ; LEE, Seok-Soo ; DOO, Seok-Gwang</creatorcontrib><description>Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ray diffraction analysis indicates that the resulting MnO sub(2) consists of multiple phases, [lambda]-MnO sub(2), alpha -MnO sub(2), and beta -MnO sub(2), depending on the leaching time in acid solution. Upon the first charge-discharge cycle in acetonitrile electrolyte, the [lambda]-MnO sub(2) based electrode shows larger reversible capacity of ~330 mAh g super(-1) compared to an electrode containing a large amount of alpha -MnO sub(2). This enhanced capacity is associated with the facile charge-transfer reaction of Mg ions at the MnO sub(2)/electrolyte interfaces. The capacity fading of MnO sub(2) in different electrolytes is also discussed in terms of the formation of a surface layer at the electrode/electrolyte interface during the charging process.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.07.162</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Applied sciences ; Cathodes ; Direct energy conversion and energy accumulation ; Electric batteries ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Electrolytes ; Exact sciences and technology ; Fading ; Magnesium ; Manganese dioxide ; Materials ; Nanostructure ; Rechargeable batteries</subject><ispartof>Journal of power sources, 2015, Vol.273, p.210-215</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-94c944bdd74fb7a32592cad9fe84eeb5a7fe8e722fc5ef84c13544f78c18ca353</citedby><cites>FETCH-LOGICAL-c458t-94c944bdd74fb7a32592cad9fe84eeb5a7fe8e722fc5ef84c13544f78c18ca353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28930451$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KIM, Ju-Sik</creatorcontrib><creatorcontrib>CHANG, Won-Seok</creatorcontrib><creatorcontrib>KIM, Ryoung-Hee</creatorcontrib><creatorcontrib>KIM, Dong-Young</creatorcontrib><creatorcontrib>HAN, Dong-Wook</creatorcontrib><creatorcontrib>LEE, Kyu-Hyoung</creatorcontrib><creatorcontrib>LEE, Seok-Soo</creatorcontrib><creatorcontrib>DOO, Seok-Gwang</creatorcontrib><title>High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries</title><title>Journal of power sources</title><description>Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ray diffraction analysis indicates that the resulting MnO sub(2) consists of multiple phases, [lambda]-MnO sub(2), alpha -MnO sub(2), and beta -MnO sub(2), depending on the leaching time in acid solution. Upon the first charge-discharge cycle in acetonitrile electrolyte, the [lambda]-MnO sub(2) based electrode shows larger reversible capacity of ~330 mAh g super(-1) compared to an electrode containing a large amount of alpha -MnO sub(2). This enhanced capacity is associated with the facile charge-transfer reaction of Mg ions at the MnO sub(2)/electrolyte interfaces. The capacity fading of MnO sub(2) in different electrolytes is also discussed in terms of the formation of a surface layer at the electrode/electrolyte interface during the charging process.</description><subject>Applied sciences</subject><subject>Cathodes</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric batteries</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Exact sciences and technology</subject><subject>Fading</subject><subject>Magnesium</subject><subject>Manganese dioxide</subject><subject>Materials</subject><subject>Nanostructure</subject><subject>Rechargeable batteries</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-BelF8NKazyY9ivgFghc9h2k62c3SbdakRf33Vlw9e3rn8Dwzw0vIOaMVo6y-2lSbXXzPcUoVp0xWVFes5gdkwYwWJddKHZIFFdqUWitxTE5y3lBKGdN0QexDWK1LBztwYfwsBhhiHtPkxilhV2xhWMGAGYsuxI_QYeFgXMc5fUxFQreGtEJoe5zR1QyGaVuEOBQtjCOmgPmUHHnoM57tc0le725fbh7Kp-f7x5vrp9JJZcayka6Rsu06LX2rQXDVcAdd49FIxFaBnifUnHun0BvpmFBSem0cMw6EEkty-bN3l-LbhHm025Ad9v38fpyyZXXdGFmLWv4DVUoLIRozo_UP6lLMOaG3uxS2kD4to_a7fLuxv-Xb7_It1bPPZ_FifwOyg94nGFzIfzY3jaBSMfEFm8aKlQ</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>KIM, Ju-Sik</creator><creator>CHANG, Won-Seok</creator><creator>KIM, Ryoung-Hee</creator><creator>KIM, Dong-Young</creator><creator>HAN, Dong-Wook</creator><creator>LEE, Kyu-Hyoung</creator><creator>LEE, Seok-Soo</creator><creator>DOO, Seok-Gwang</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2015</creationdate><title>High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries</title><author>KIM, Ju-Sik ; CHANG, Won-Seok ; KIM, Ryoung-Hee ; KIM, Dong-Young ; HAN, Dong-Wook ; LEE, Kyu-Hyoung ; LEE, Seok-Soo ; DOO, Seok-Gwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-94c944bdd74fb7a32592cad9fe84eeb5a7fe8e722fc5ef84c13544f78c18ca353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied sciences</topic><topic>Cathodes</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric batteries</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Exact sciences and technology</topic><topic>Fading</topic><topic>Magnesium</topic><topic>Manganese dioxide</topic><topic>Materials</topic><topic>Nanostructure</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, Ju-Sik</creatorcontrib><creatorcontrib>CHANG, Won-Seok</creatorcontrib><creatorcontrib>KIM, Ryoung-Hee</creatorcontrib><creatorcontrib>KIM, Dong-Young</creatorcontrib><creatorcontrib>HAN, Dong-Wook</creatorcontrib><creatorcontrib>LEE, Kyu-Hyoung</creatorcontrib><creatorcontrib>LEE, Seok-Soo</creatorcontrib><creatorcontrib>DOO, Seok-Gwang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, Ju-Sik</au><au>CHANG, Won-Seok</au><au>KIM, Ryoung-Hee</au><au>KIM, Dong-Young</au><au>HAN, Dong-Wook</au><au>LEE, Kyu-Hyoung</au><au>LEE, Seok-Soo</au><au>DOO, Seok-Gwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries</atitle><jtitle>Journal of power sources</jtitle><date>2015</date><risdate>2015</risdate><volume>273</volume><spage>210</spage><epage>215</epage><pages>210-215</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Nanostructured [lambda]-MnO sub(2) and alpha -MnO sub(2) are investigated for use in rechargeable Mg ion battery (MIB) cathodes. In order to prepare nanosized particles, the manganese dioxides are prepared by the acid treatment of spinel MgMn sub(2)O sub(4) synthesized using the Pechini method. X-ray diffraction analysis indicates that the resulting MnO sub(2) consists of multiple phases, [lambda]-MnO sub(2), alpha -MnO sub(2), and beta -MnO sub(2), depending on the leaching time in acid solution. Upon the first charge-discharge cycle in acetonitrile electrolyte, the [lambda]-MnO sub(2) based electrode shows larger reversible capacity of ~330 mAh g super(-1) compared to an electrode containing a large amount of alpha -MnO sub(2). This enhanced capacity is associated with the facile charge-transfer reaction of Mg ions at the MnO sub(2)/electrolyte interfaces. The capacity fading of MnO sub(2) in different electrolytes is also discussed in terms of the formation of a surface layer at the electrode/electrolyte interface during the charging process.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.jpowsour.2014.07.162</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2015, Vol.273, p.210-215 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669846364 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Cathodes Direct energy conversion and energy accumulation Electric batteries Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrodes Electrolytes Exact sciences and technology Fading Magnesium Manganese dioxide Materials Nanostructure Rechargeable batteries |
title | High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-capacity%20nanostructured%20manganese%20dioxide%20cathode%20for%20rechargeable%20magnesium%20ion%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=KIM,%20Ju-Sik&rft.date=2015&rft.volume=273&rft.spage=210&rft.epage=215&rft.pages=210-215&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.07.162&rft_dat=%3Cproquest_cross%3E1655733398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1655733398&rft_id=info:pmid/&rfr_iscdi=true |