Typification of load curves for DSM in Brazil for a smart grid environment

•This study discusses the use of DSM in a smart grid environment in Brazil.•We present the simulation for creating load curve patterns using the k-means technique.•The creation of the load curve patterns is for selecting the policies of DSM. The deployment of a smart grid environment is a worldwide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical power & energy systems 2015-05, Vol.67, p.216-221
Hauptverfasser: Macedo, Maria N.Q., Galo, Joaquim J.M., Almeida, Luiz A.L., Lima, Antonio C.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue
container_start_page 216
container_title International journal of electrical power & energy systems
container_volume 67
creator Macedo, Maria N.Q.
Galo, Joaquim J.M.
Almeida, Luiz A.L.
Lima, Antonio C.C.
description •This study discusses the use of DSM in a smart grid environment in Brazil.•We present the simulation for creating load curve patterns using the k-means technique.•The creation of the load curve patterns is for selecting the policies of DSM. The deployment of a smart grid environment is a worldwide trend and generates of a large volume of data. The load curve for each consumer in real time is an example of this. The challenge is the transformation of these data into useful information that may help to improve efficiency in the management, planning and operation of the power grid. The implementation of demand side management (DSM) requires an analysis of the data generated in a smart grid environment to determine which policies are most appropriate for each type of consumer. Because of the large number of customers, the application of these policies involves the selection of patterns for the load curve. This study discusses the use of DSM in a smart grid environment in Brazil and presents the simulation for creating load curve patterns using the k-means technique from the consumer data of a concessionaire for the Brazilian electric system. The result obtained in this research is the creation of the load curve patterns for selecting the policies of DSM.
doi_str_mv 10.1016/j.ijepes.2014.11.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669845681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142061514007200</els_id><sourcerecordid>1660395186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ac40ae8c09a49b0e06fdf9711444930c62014a5f20b8744fe9138b9466a33a13</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwDzj4yCXBmzhOfEHi_VARB3q3XGeNHKVxsNNK5deTEs6I00q734x2hpBzYCkwEJdN6hrsMaYZA54CpCyTB2QGVSmTvIDykMzGQ5YwAcUxOYmxYYyVkmcz8rLc9c46owfnO-otbb2uqdmELUZqfaB376_UdfQm6C_X_mw0jWsdBvoRXE2x27rguzV2wyk5srqNePY752T5cL-8fUoWb4_Pt9eLxORlNiTacKaxMkxqLlcMmbC1lSUA51zmzIh9CF3YjK2qknOLEvJqJbkQOs815HNyMdn2wX9uMA5q7aLBttUd-k1UIISseCGqf6EslwVUYkT5hJrgYwxoVR_cGHOngKl9yapRU8lq_58CUGPJo-xqkuEYeOswqGgcdgZrF9AMqvbub4Nv7laFiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660395186</pqid></control><display><type>article</type><title>Typification of load curves for DSM in Brazil for a smart grid environment</title><source>Access via ScienceDirect (Elsevier)</source><creator>Macedo, Maria N.Q. ; Galo, Joaquim J.M. ; Almeida, Luiz A.L. ; Lima, Antonio C.C.</creator><creatorcontrib>Macedo, Maria N.Q. ; Galo, Joaquim J.M. ; Almeida, Luiz A.L. ; Lima, Antonio C.C.</creatorcontrib><description>•This study discusses the use of DSM in a smart grid environment in Brazil.•We present the simulation for creating load curve patterns using the k-means technique.•The creation of the load curve patterns is for selecting the policies of DSM. The deployment of a smart grid environment is a worldwide trend and generates of a large volume of data. The load curve for each consumer in real time is an example of this. The challenge is the transformation of these data into useful information that may help to improve efficiency in the management, planning and operation of the power grid. The implementation of demand side management (DSM) requires an analysis of the data generated in a smart grid environment to determine which policies are most appropriate for each type of consumer. Because of the large number of customers, the application of these policies involves the selection of patterns for the load curve. This study discusses the use of DSM in a smart grid environment in Brazil and presents the simulation for creating load curve patterns using the k-means technique from the consumer data of a concessionaire for the Brazilian electric system. The result obtained in this research is the creation of the load curve patterns for selecting the policies of DSM.</description><identifier>ISSN: 0142-0615</identifier><identifier>EISSN: 1879-3517</identifier><identifier>DOI: 10.1016/j.ijepes.2014.11.029</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Brazil ; Consumers ; Customers ; Demand side management ; Distributed memory ; Electric power generation ; Load curve ; Policies ; Simulation ; Smart grid ; Transformations</subject><ispartof>International journal of electrical power &amp; energy systems, 2015-05, Vol.67, p.216-221</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ac40ae8c09a49b0e06fdf9711444930c62014a5f20b8744fe9138b9466a33a13</citedby><cites>FETCH-LOGICAL-c372t-ac40ae8c09a49b0e06fdf9711444930c62014a5f20b8744fe9138b9466a33a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijepes.2014.11.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Macedo, Maria N.Q.</creatorcontrib><creatorcontrib>Galo, Joaquim J.M.</creatorcontrib><creatorcontrib>Almeida, Luiz A.L.</creatorcontrib><creatorcontrib>Lima, Antonio C.C.</creatorcontrib><title>Typification of load curves for DSM in Brazil for a smart grid environment</title><title>International journal of electrical power &amp; energy systems</title><description>•This study discusses the use of DSM in a smart grid environment in Brazil.•We present the simulation for creating load curve patterns using the k-means technique.•The creation of the load curve patterns is for selecting the policies of DSM. The deployment of a smart grid environment is a worldwide trend and generates of a large volume of data. The load curve for each consumer in real time is an example of this. The challenge is the transformation of these data into useful information that may help to improve efficiency in the management, planning and operation of the power grid. The implementation of demand side management (DSM) requires an analysis of the data generated in a smart grid environment to determine which policies are most appropriate for each type of consumer. Because of the large number of customers, the application of these policies involves the selection of patterns for the load curve. This study discusses the use of DSM in a smart grid environment in Brazil and presents the simulation for creating load curve patterns using the k-means technique from the consumer data of a concessionaire for the Brazilian electric system. The result obtained in this research is the creation of the load curve patterns for selecting the policies of DSM.</description><subject>Brazil</subject><subject>Consumers</subject><subject>Customers</subject><subject>Demand side management</subject><subject>Distributed memory</subject><subject>Electric power generation</subject><subject>Load curve</subject><subject>Policies</subject><subject>Simulation</subject><subject>Smart grid</subject><subject>Transformations</subject><issn>0142-0615</issn><issn>1879-3517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwDzj4yCXBmzhOfEHi_VARB3q3XGeNHKVxsNNK5deTEs6I00q734x2hpBzYCkwEJdN6hrsMaYZA54CpCyTB2QGVSmTvIDykMzGQ5YwAcUxOYmxYYyVkmcz8rLc9c46owfnO-otbb2uqdmELUZqfaB376_UdfQm6C_X_mw0jWsdBvoRXE2x27rguzV2wyk5srqNePY752T5cL-8fUoWb4_Pt9eLxORlNiTacKaxMkxqLlcMmbC1lSUA51zmzIh9CF3YjK2qknOLEvJqJbkQOs815HNyMdn2wX9uMA5q7aLBttUd-k1UIISseCGqf6EslwVUYkT5hJrgYwxoVR_cGHOngKl9yapRU8lq_58CUGPJo-xqkuEYeOswqGgcdgZrF9AMqvbub4Nv7laFiQ</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Macedo, Maria N.Q.</creator><creator>Galo, Joaquim J.M.</creator><creator>Almeida, Luiz A.L.</creator><creator>Lima, Antonio C.C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Typification of load curves for DSM in Brazil for a smart grid environment</title><author>Macedo, Maria N.Q. ; Galo, Joaquim J.M. ; Almeida, Luiz A.L. ; Lima, Antonio C.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ac40ae8c09a49b0e06fdf9711444930c62014a5f20b8744fe9138b9466a33a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Brazil</topic><topic>Consumers</topic><topic>Customers</topic><topic>Demand side management</topic><topic>Distributed memory</topic><topic>Electric power generation</topic><topic>Load curve</topic><topic>Policies</topic><topic>Simulation</topic><topic>Smart grid</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macedo, Maria N.Q.</creatorcontrib><creatorcontrib>Galo, Joaquim J.M.</creatorcontrib><creatorcontrib>Almeida, Luiz A.L.</creatorcontrib><creatorcontrib>Lima, Antonio C.C.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of electrical power &amp; energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macedo, Maria N.Q.</au><au>Galo, Joaquim J.M.</au><au>Almeida, Luiz A.L.</au><au>Lima, Antonio C.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Typification of load curves for DSM in Brazil for a smart grid environment</atitle><jtitle>International journal of electrical power &amp; energy systems</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>67</volume><spage>216</spage><epage>221</epage><pages>216-221</pages><issn>0142-0615</issn><eissn>1879-3517</eissn><abstract>•This study discusses the use of DSM in a smart grid environment in Brazil.•We present the simulation for creating load curve patterns using the k-means technique.•The creation of the load curve patterns is for selecting the policies of DSM. The deployment of a smart grid environment is a worldwide trend and generates of a large volume of data. The load curve for each consumer in real time is an example of this. The challenge is the transformation of these data into useful information that may help to improve efficiency in the management, planning and operation of the power grid. The implementation of demand side management (DSM) requires an analysis of the data generated in a smart grid environment to determine which policies are most appropriate for each type of consumer. Because of the large number of customers, the application of these policies involves the selection of patterns for the load curve. This study discusses the use of DSM in a smart grid environment in Brazil and presents the simulation for creating load curve patterns using the k-means technique from the consumer data of a concessionaire for the Brazilian electric system. The result obtained in this research is the creation of the load curve patterns for selecting the policies of DSM.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijepes.2014.11.029</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-0615
ispartof International journal of electrical power & energy systems, 2015-05, Vol.67, p.216-221
issn 0142-0615
1879-3517
language eng
recordid cdi_proquest_miscellaneous_1669845681
source Access via ScienceDirect (Elsevier)
subjects Brazil
Consumers
Customers
Demand side management
Distributed memory
Electric power generation
Load curve
Policies
Simulation
Smart grid
Transformations
title Typification of load curves for DSM in Brazil for a smart grid environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Typification%20of%20load%20curves%20for%20DSM%20in%20Brazil%20for%20a%20smart%20grid%20environment&rft.jtitle=International%20journal%20of%20electrical%20power%20&%20energy%20systems&rft.au=Macedo,%20Maria%20N.Q.&rft.date=2015-05-01&rft.volume=67&rft.spage=216&rft.epage=221&rft.pages=216-221&rft.issn=0142-0615&rft.eissn=1879-3517&rft_id=info:doi/10.1016/j.ijepes.2014.11.029&rft_dat=%3Cproquest_cross%3E1660395186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660395186&rft_id=info:pmid/&rft_els_id=S0142061514007200&rfr_iscdi=true