Face recognition using Extended Curvature Gabor classifier bunch
We describe a novel face recognition using the Extended Curvature Gabor (ECG) Classifier Bunch. First, we extend Gabor kernels into the ECG kernels by adding a spatial curvature term to the kernel and adjusting the width of the Gaussian at the kernel, which leads to numerous feature candidates being...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2015-04, Vol.48 (4), p.1247-1260 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1260 |
---|---|
container_issue | 4 |
container_start_page | 1247 |
container_title | Pattern recognition |
container_volume | 48 |
creator | Hwang, Wonjun Huang, Xiangsheng Li, Stan Z. Kim, Junmo |
description | We describe a novel face recognition using the Extended Curvature Gabor (ECG) Classifier Bunch. First, we extend Gabor kernels into the ECG kernels by adding a spatial curvature term to the kernel and adjusting the width of the Gaussian at the kernel, which leads to numerous feature candidates being extracted from a single image. To handle large feature candidates efficiently, we divide them into multiple ECG coefficients according to different kernel parameters, and then we independently select the salient features from each ECG coefficient using the boosting method. A single ECG classifier is implemented by applying Linear Discriminant Analysis (LDA) to the selected feature vector. To overcome the accuracy limitation of a single classifier, we propose an ECG classifier bunch that combines multiple ECG classifiers with the fusion scheme. We confirm the generality of the performances of the proposed method using the FRGC version 2.0, XM2VTS, BANCA, and PIE databases.
•We propose extended curvature Gabor kernels as complementary features.•Homogeneous Classifier Bunch increases accuracy in low/mid-resolution images.•Parallel boosting method effectively selects salient features from many features.•We report the best verification rate using the FRGC version 2.0 database.•We have extensive experimental results. |
doi_str_mv | 10.1016/j.patcog.2014.09.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669843897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320314003975</els_id><sourcerecordid>1669843897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-e87d59a8030f64c1b7abbdf63f3f5767264439ce76aa54aa48fc5c24bba4df53</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwBwwZWRLs2LHjBYEqWpAqsXS3Xpzn4qpNip1U8Pe4CjPTG949V7qHkHtGC0aZfNwVRxhsvy1KykRBdUFLfUFmrFY8r5goL8mMUs5yXlJ-TW5i3FHKVHrMyPMSLGYBE935wfddNkbfbbPX7wG7FttsMYYTDGPAbAVNHzK7hxi98xiyZuzs5y25crCPePd352SzfN0s3vL1x-p98bLOLed6yLFWbaWhppw6KSxrFDRN6yR33FVKqlIKwbVFJQEqASBqZytbiqYB0bqKz8nDVHsM_deIcTAHHy3u99BhP0bDpNS14LVWKSqmqA19jAGdOQZ_gPBjGDVnX2ZnJl_m7MtQbZKvhD1NGKYVp7TPROuxs9j6pGcwbe__L_gFA9x2Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669843897</pqid></control><display><type>article</type><title>Face recognition using Extended Curvature Gabor classifier bunch</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hwang, Wonjun ; Huang, Xiangsheng ; Li, Stan Z. ; Kim, Junmo</creator><creatorcontrib>Hwang, Wonjun ; Huang, Xiangsheng ; Li, Stan Z. ; Kim, Junmo</creatorcontrib><description>We describe a novel face recognition using the Extended Curvature Gabor (ECG) Classifier Bunch. First, we extend Gabor kernels into the ECG kernels by adding a spatial curvature term to the kernel and adjusting the width of the Gaussian at the kernel, which leads to numerous feature candidates being extracted from a single image. To handle large feature candidates efficiently, we divide them into multiple ECG coefficients according to different kernel parameters, and then we independently select the salient features from each ECG coefficient using the boosting method. A single ECG classifier is implemented by applying Linear Discriminant Analysis (LDA) to the selected feature vector. To overcome the accuracy limitation of a single classifier, we propose an ECG classifier bunch that combines multiple ECG classifiers with the fusion scheme. We confirm the generality of the performances of the proposed method using the FRGC version 2.0, XM2VTS, BANCA, and PIE databases.
•We propose extended curvature Gabor kernels as complementary features.•Homogeneous Classifier Bunch increases accuracy in low/mid-resolution images.•Parallel boosting method effectively selects salient features from many features.•We report the best verification rate using the FRGC version 2.0 database.•We have extensive experimental results.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2014.09.029</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Classifiers ; Curvature ; Discriminant analysis ; Extended Curvature Gabor wavelet ; Face recognition ; Face Recognition Grand Challenge (FRGC) ; Feature extraction ; Gaussian ; Kernels ; Mathematical analysis ; Pattern recognition ; Vectors (mathematics)</subject><ispartof>Pattern recognition, 2015-04, Vol.48 (4), p.1247-1260</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-e87d59a8030f64c1b7abbdf63f3f5767264439ce76aa54aa48fc5c24bba4df53</citedby><cites>FETCH-LOGICAL-c339t-e87d59a8030f64c1b7abbdf63f3f5767264439ce76aa54aa48fc5c24bba4df53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2014.09.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Hwang, Wonjun</creatorcontrib><creatorcontrib>Huang, Xiangsheng</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><creatorcontrib>Kim, Junmo</creatorcontrib><title>Face recognition using Extended Curvature Gabor classifier bunch</title><title>Pattern recognition</title><description>We describe a novel face recognition using the Extended Curvature Gabor (ECG) Classifier Bunch. First, we extend Gabor kernels into the ECG kernels by adding a spatial curvature term to the kernel and adjusting the width of the Gaussian at the kernel, which leads to numerous feature candidates being extracted from a single image. To handle large feature candidates efficiently, we divide them into multiple ECG coefficients according to different kernel parameters, and then we independently select the salient features from each ECG coefficient using the boosting method. A single ECG classifier is implemented by applying Linear Discriminant Analysis (LDA) to the selected feature vector. To overcome the accuracy limitation of a single classifier, we propose an ECG classifier bunch that combines multiple ECG classifiers with the fusion scheme. We confirm the generality of the performances of the proposed method using the FRGC version 2.0, XM2VTS, BANCA, and PIE databases.
•We propose extended curvature Gabor kernels as complementary features.•Homogeneous Classifier Bunch increases accuracy in low/mid-resolution images.•Parallel boosting method effectively selects salient features from many features.•We report the best verification rate using the FRGC version 2.0 database.•We have extensive experimental results.</description><subject>Classifiers</subject><subject>Curvature</subject><subject>Discriminant analysis</subject><subject>Extended Curvature Gabor wavelet</subject><subject>Face recognition</subject><subject>Face Recognition Grand Challenge (FRGC)</subject><subject>Feature extraction</subject><subject>Gaussian</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Pattern recognition</subject><subject>Vectors (mathematics)</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwBwwZWRLs2LHjBYEqWpAqsXS3Xpzn4qpNip1U8Pe4CjPTG949V7qHkHtGC0aZfNwVRxhsvy1KykRBdUFLfUFmrFY8r5goL8mMUs5yXlJ-TW5i3FHKVHrMyPMSLGYBE935wfddNkbfbbPX7wG7FttsMYYTDGPAbAVNHzK7hxi98xiyZuzs5y25crCPePd352SzfN0s3vL1x-p98bLOLed6yLFWbaWhppw6KSxrFDRN6yR33FVKqlIKwbVFJQEqASBqZytbiqYB0bqKz8nDVHsM_deIcTAHHy3u99BhP0bDpNS14LVWKSqmqA19jAGdOQZ_gPBjGDVnX2ZnJl_m7MtQbZKvhD1NGKYVp7TPROuxs9j6pGcwbe__L_gFA9x2Pw</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Hwang, Wonjun</creator><creator>Huang, Xiangsheng</creator><creator>Li, Stan Z.</creator><creator>Kim, Junmo</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>Face recognition using Extended Curvature Gabor classifier bunch</title><author>Hwang, Wonjun ; Huang, Xiangsheng ; Li, Stan Z. ; Kim, Junmo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-e87d59a8030f64c1b7abbdf63f3f5767264439ce76aa54aa48fc5c24bba4df53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classifiers</topic><topic>Curvature</topic><topic>Discriminant analysis</topic><topic>Extended Curvature Gabor wavelet</topic><topic>Face recognition</topic><topic>Face Recognition Grand Challenge (FRGC)</topic><topic>Feature extraction</topic><topic>Gaussian</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Pattern recognition</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Wonjun</creatorcontrib><creatorcontrib>Huang, Xiangsheng</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><creatorcontrib>Kim, Junmo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Wonjun</au><au>Huang, Xiangsheng</au><au>Li, Stan Z.</au><au>Kim, Junmo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face recognition using Extended Curvature Gabor classifier bunch</atitle><jtitle>Pattern recognition</jtitle><date>2015-04</date><risdate>2015</risdate><volume>48</volume><issue>4</issue><spage>1247</spage><epage>1260</epage><pages>1247-1260</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><abstract>We describe a novel face recognition using the Extended Curvature Gabor (ECG) Classifier Bunch. First, we extend Gabor kernels into the ECG kernels by adding a spatial curvature term to the kernel and adjusting the width of the Gaussian at the kernel, which leads to numerous feature candidates being extracted from a single image. To handle large feature candidates efficiently, we divide them into multiple ECG coefficients according to different kernel parameters, and then we independently select the salient features from each ECG coefficient using the boosting method. A single ECG classifier is implemented by applying Linear Discriminant Analysis (LDA) to the selected feature vector. To overcome the accuracy limitation of a single classifier, we propose an ECG classifier bunch that combines multiple ECG classifiers with the fusion scheme. We confirm the generality of the performances of the proposed method using the FRGC version 2.0, XM2VTS, BANCA, and PIE databases.
•We propose extended curvature Gabor kernels as complementary features.•Homogeneous Classifier Bunch increases accuracy in low/mid-resolution images.•Parallel boosting method effectively selects salient features from many features.•We report the best verification rate using the FRGC version 2.0 database.•We have extensive experimental results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2014.09.029</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2015-04, Vol.48 (4), p.1247-1260 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669843897 |
source | Access via ScienceDirect (Elsevier) |
subjects | Classifiers Curvature Discriminant analysis Extended Curvature Gabor wavelet Face recognition Face Recognition Grand Challenge (FRGC) Feature extraction Gaussian Kernels Mathematical analysis Pattern recognition Vectors (mathematics) |
title | Face recognition using Extended Curvature Gabor classifier bunch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20recognition%20using%20Extended%20Curvature%20Gabor%20classifier%20bunch&rft.jtitle=Pattern%20recognition&rft.au=Hwang,%20Wonjun&rft.date=2015-04&rft.volume=48&rft.issue=4&rft.spage=1247&rft.epage=1260&rft.pages=1247-1260&rft.issn=0031-3203&rft.eissn=1873-5142&rft_id=info:doi/10.1016/j.patcog.2014.09.029&rft_dat=%3Cproquest_cross%3E1669843897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669843897&rft_id=info:pmid/&rft_els_id=S0031320314003975&rfr_iscdi=true |