Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques

The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of manufacturing, materials, and mechanical engineering materials, and mechanical engineering, 2014-07, Vol.4 (3), p.50-63
Hauptverfasser: Shankar, Karthik V, K, Kailasnath, Devasenapati, S Babu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 3
container_start_page 50
container_title International journal of manufacturing, materials, and mechanical engineering
container_volume 4
creator Shankar, Karthik V
K, Kailasnath
Devasenapati, S Babu
description The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden variation in applied load. Any fault in the transmission system could lead to the catastrophic failures hence need for this work. This paper deals with the identification of various fault conditions that happen in a transmission system using vibration signals acquired by an accelerometer. The acquired signals are processed to extract the statistical and spectral features. These features are used to build a machine learning model using decision tree or Random forest algorithm. The best combination of features and algorithm is evaluated and the results are presented.
doi_str_mv 10.4018/ijmmme.2014070103
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669843807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760575937</galeid><sourcerecordid>A760575937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-2eea21fe9da4aa0a10a2c0799549cdfa3e508763020444b03249388b929338df3</originalsourceid><addsrcrecordid>eNp1kV9r2zAUxc3YoKXrB-ibYC8bLN3VH9vSY0jWblBYIemzUJwrV8G2Mkmm5NtPiUcLW6uXK6SfztW5pyiuKFwLoPKb2_V9j9cMqIAaKPB3xTmjZTWjVc3eP-8lnBWXMe4gr1JIYNV5cVhidO1AvCU3ZuwSWWLCJjk_kNUhJuyJ9YHMx-R7v3Edknv_hIGsg3EDeYhuaMnStS6ZjqyyTi73wTcYTzdm2JKVt4ksfL8f0_Fojc3j4H6PGD8WH6zpIl7-rRfFw8339eLH7O7X7c_F_G7WiJKnGUM0jFpUWyOMAUPBsAZqpUqhmq01HEuQdcWBgRBiA5wJxaXcKKY4l1vLL4rPk-4--GPfpHsXG-w6M6Afo6ZVpaTgEuqMfvoH3fkxZFNRZzWqJFQ1ZOrrRLWmQ70Zs9WT3zzHxxRbM8ao53UFZV0qfhSlE94EH2NAq_fB9SYcNAV9jE9P8emX-PKbL9ObPNqXP_zH6f3J3-0rbDtob_UpUv0cqc6RvtlU8D89DLSH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931980670</pqid></control><display><type>article</type><title>Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Shankar, Karthik V ; K, Kailasnath ; Devasenapati, S Babu</creator><creatorcontrib>Shankar, Karthik V ; K, Kailasnath ; Devasenapati, S Babu</creatorcontrib><description>The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden variation in applied load. Any fault in the transmission system could lead to the catastrophic failures hence need for this work. This paper deals with the identification of various fault conditions that happen in a transmission system using vibration signals acquired by an accelerometer. The acquired signals are processed to extract the statistical and spectral features. These features are used to build a machine learning model using decision tree or Random forest algorithm. The best combination of features and algorithm is evaluated and the results are presented.</description><identifier>ISSN: 2156-1680</identifier><identifier>EISSN: 2156-1672</identifier><identifier>DOI: 10.4018/ijmmme.2014070103</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Accelerometers ; Algorithms ; Automobiles ; Automotive engineering ; Decision trees ; Detectors ; Digital signal processing ; Digital signal processors ; Fault detection ; Faults ; Internal combustion engines ; Machine learning ; Maintenance and repair ; Mathematical models ; Methods ; Powertrain ; Predictive maintenance ; Signal processing ; Soft computing ; Subsystems ; Transmissions (automotive) ; Vibration</subject><ispartof>International journal of manufacturing, materials, and mechanical engineering, 2014-07, Vol.4 (3), p.50-63</ispartof><rights>COPYRIGHT 2014 IGI Global</rights><rights>Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c453t-2eea21fe9da4aa0a10a2c0799549cdfa3e508763020444b03249388b929338df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2931980670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,43781</link.rule.ids></links><search><creatorcontrib>Shankar, Karthik V</creatorcontrib><creatorcontrib>K, Kailasnath</creatorcontrib><creatorcontrib>Devasenapati, S Babu</creatorcontrib><title>Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques</title><title>International journal of manufacturing, materials, and mechanical engineering</title><description>The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden variation in applied load. Any fault in the transmission system could lead to the catastrophic failures hence need for this work. This paper deals with the identification of various fault conditions that happen in a transmission system using vibration signals acquired by an accelerometer. The acquired signals are processed to extract the statistical and spectral features. These features are used to build a machine learning model using decision tree or Random forest algorithm. The best combination of features and algorithm is evaluated and the results are presented.</description><subject>Accelerometers</subject><subject>Algorithms</subject><subject>Automobiles</subject><subject>Automotive engineering</subject><subject>Decision trees</subject><subject>Detectors</subject><subject>Digital signal processing</subject><subject>Digital signal processors</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Internal combustion engines</subject><subject>Machine learning</subject><subject>Maintenance and repair</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Powertrain</subject><subject>Predictive maintenance</subject><subject>Signal processing</subject><subject>Soft computing</subject><subject>Subsystems</subject><subject>Transmissions (automotive)</subject><subject>Vibration</subject><issn>2156-1680</issn><issn>2156-1672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kV9r2zAUxc3YoKXrB-ibYC8bLN3VH9vSY0jWblBYIemzUJwrV8G2Mkmm5NtPiUcLW6uXK6SfztW5pyiuKFwLoPKb2_V9j9cMqIAaKPB3xTmjZTWjVc3eP-8lnBWXMe4gr1JIYNV5cVhidO1AvCU3ZuwSWWLCJjk_kNUhJuyJ9YHMx-R7v3Edknv_hIGsg3EDeYhuaMnStS6ZjqyyTi73wTcYTzdm2JKVt4ksfL8f0_Fojc3j4H6PGD8WH6zpIl7-rRfFw8339eLH7O7X7c_F_G7WiJKnGUM0jFpUWyOMAUPBsAZqpUqhmq01HEuQdcWBgRBiA5wJxaXcKKY4l1vLL4rPk-4--GPfpHsXG-w6M6Afo6ZVpaTgEuqMfvoH3fkxZFNRZzWqJFQ1ZOrrRLWmQ70Zs9WT3zzHxxRbM8ao53UFZV0qfhSlE94EH2NAq_fB9SYcNAV9jE9P8emX-PKbL9ObPNqXP_zH6f3J3-0rbDtob_UpUv0cqc6RvtlU8D89DLSH</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Shankar, Karthik V</creator><creator>K, Kailasnath</creator><creator>Devasenapati, S Babu</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>7SU</scope><scope>C1K</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques</title><author>Shankar, Karthik V ; K, Kailasnath ; Devasenapati, S Babu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-2eea21fe9da4aa0a10a2c0799549cdfa3e508763020444b03249388b929338df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerometers</topic><topic>Algorithms</topic><topic>Automobiles</topic><topic>Automotive engineering</topic><topic>Decision trees</topic><topic>Detectors</topic><topic>Digital signal processing</topic><topic>Digital signal processors</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Internal combustion engines</topic><topic>Machine learning</topic><topic>Maintenance and repair</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Powertrain</topic><topic>Predictive maintenance</topic><topic>Signal processing</topic><topic>Soft computing</topic><topic>Subsystems</topic><topic>Transmissions (automotive)</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, Karthik V</creatorcontrib><creatorcontrib>K, Kailasnath</creatorcontrib><creatorcontrib>Devasenapati, S Babu</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of manufacturing, materials, and mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, Karthik V</au><au>K, Kailasnath</au><au>Devasenapati, S Babu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques</atitle><jtitle>International journal of manufacturing, materials, and mechanical engineering</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>4</volume><issue>3</issue><spage>50</spage><epage>63</epage><pages>50-63</pages><issn>2156-1680</issn><eissn>2156-1672</eissn><abstract>The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden variation in applied load. Any fault in the transmission system could lead to the catastrophic failures hence need for this work. This paper deals with the identification of various fault conditions that happen in a transmission system using vibration signals acquired by an accelerometer. The acquired signals are processed to extract the statistical and spectral features. These features are used to build a machine learning model using decision tree or Random forest algorithm. The best combination of features and algorithm is evaluated and the results are presented.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/ijmmme.2014070103</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2156-1680
ispartof International journal of manufacturing, materials, and mechanical engineering, 2014-07, Vol.4 (3), p.50-63
issn 2156-1680
2156-1672
language eng
recordid cdi_proquest_miscellaneous_1669843807
source Alma/SFX Local Collection; ProQuest Central
subjects Accelerometers
Algorithms
Automobiles
Automotive engineering
Decision trees
Detectors
Digital signal processing
Digital signal processors
Fault detection
Faults
Internal combustion engines
Machine learning
Maintenance and repair
Mathematical models
Methods
Powertrain
Predictive maintenance
Signal processing
Soft computing
Subsystems
Transmissions (automotive)
Vibration
title Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Fault%20Detection%20System%20for%20Automobile%20Power%20Train%20Using%20Digital%20Signal%20Processing%20and%20Soft%20Computing%20Techniques&rft.jtitle=International%20journal%20of%20manufacturing,%20materials,%20and%20mechanical%20engineering&rft.au=Shankar,%20Karthik%20V&rft.date=2014-07-01&rft.volume=4&rft.issue=3&rft.spage=50&rft.epage=63&rft.pages=50-63&rft.issn=2156-1680&rft.eissn=2156-1672&rft_id=info:doi/10.4018/ijmmme.2014070103&rft_dat=%3Cgale_proqu%3EA760575937%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931980670&rft_id=info:pmid/&rft_galeid=A760575937&rfr_iscdi=true