Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques
The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden...
Gespeichert in:
Veröffentlicht in: | International journal of manufacturing, materials, and mechanical engineering materials, and mechanical engineering, 2014-07, Vol.4 (3), p.50-63 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 3 |
container_start_page | 50 |
container_title | International journal of manufacturing, materials, and mechanical engineering |
container_volume | 4 |
creator | Shankar, Karthik V K, Kailasnath Devasenapati, S Babu |
description | The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden variation in applied load. Any fault in the transmission system could lead to the catastrophic failures hence need for this work. This paper deals with the identification of various fault conditions that happen in a transmission system using vibration signals acquired by an accelerometer. The acquired signals are processed to extract the statistical and spectral features. These features are used to build a machine learning model using decision tree or Random forest algorithm. The best combination of features and algorithm is evaluated and the results are presented. |
doi_str_mv | 10.4018/ijmmme.2014070103 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669843807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760575937</galeid><sourcerecordid>A760575937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-2eea21fe9da4aa0a10a2c0799549cdfa3e508763020444b03249388b929338df3</originalsourceid><addsrcrecordid>eNp1kV9r2zAUxc3YoKXrB-ibYC8bLN3VH9vSY0jWblBYIemzUJwrV8G2Mkmm5NtPiUcLW6uXK6SfztW5pyiuKFwLoPKb2_V9j9cMqIAaKPB3xTmjZTWjVc3eP-8lnBWXMe4gr1JIYNV5cVhidO1AvCU3ZuwSWWLCJjk_kNUhJuyJ9YHMx-R7v3Edknv_hIGsg3EDeYhuaMnStS6ZjqyyTi73wTcYTzdm2JKVt4ksfL8f0_Fojc3j4H6PGD8WH6zpIl7-rRfFw8339eLH7O7X7c_F_G7WiJKnGUM0jFpUWyOMAUPBsAZqpUqhmq01HEuQdcWBgRBiA5wJxaXcKKY4l1vLL4rPk-4--GPfpHsXG-w6M6Afo6ZVpaTgEuqMfvoH3fkxZFNRZzWqJFQ1ZOrrRLWmQ70Zs9WT3zzHxxRbM8ao53UFZV0qfhSlE94EH2NAq_fB9SYcNAV9jE9P8emX-PKbL9ObPNqXP_zH6f3J3-0rbDtob_UpUv0cqc6RvtlU8D89DLSH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931980670</pqid></control><display><type>article</type><title>Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Shankar, Karthik V ; K, Kailasnath ; Devasenapati, S Babu</creator><creatorcontrib>Shankar, Karthik V ; K, Kailasnath ; Devasenapati, S Babu</creatorcontrib><description>The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden variation in applied load. Any fault in the transmission system could lead to the catastrophic failures hence need for this work. This paper deals with the identification of various fault conditions that happen in a transmission system using vibration signals acquired by an accelerometer. The acquired signals are processed to extract the statistical and spectral features. These features are used to build a machine learning model using decision tree or Random forest algorithm. The best combination of features and algorithm is evaluated and the results are presented.</description><identifier>ISSN: 2156-1680</identifier><identifier>EISSN: 2156-1672</identifier><identifier>DOI: 10.4018/ijmmme.2014070103</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Accelerometers ; Algorithms ; Automobiles ; Automotive engineering ; Decision trees ; Detectors ; Digital signal processing ; Digital signal processors ; Fault detection ; Faults ; Internal combustion engines ; Machine learning ; Maintenance and repair ; Mathematical models ; Methods ; Powertrain ; Predictive maintenance ; Signal processing ; Soft computing ; Subsystems ; Transmissions (automotive) ; Vibration</subject><ispartof>International journal of manufacturing, materials, and mechanical engineering, 2014-07, Vol.4 (3), p.50-63</ispartof><rights>COPYRIGHT 2014 IGI Global</rights><rights>Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c453t-2eea21fe9da4aa0a10a2c0799549cdfa3e508763020444b03249388b929338df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2931980670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,43781</link.rule.ids></links><search><creatorcontrib>Shankar, Karthik V</creatorcontrib><creatorcontrib>K, Kailasnath</creatorcontrib><creatorcontrib>Devasenapati, S Babu</creatorcontrib><title>Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques</title><title>International journal of manufacturing, materials, and mechanical engineering</title><description>The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden variation in applied load. Any fault in the transmission system could lead to the catastrophic failures hence need for this work. This paper deals with the identification of various fault conditions that happen in a transmission system using vibration signals acquired by an accelerometer. The acquired signals are processed to extract the statistical and spectral features. These features are used to build a machine learning model using decision tree or Random forest algorithm. The best combination of features and algorithm is evaluated and the results are presented.</description><subject>Accelerometers</subject><subject>Algorithms</subject><subject>Automobiles</subject><subject>Automotive engineering</subject><subject>Decision trees</subject><subject>Detectors</subject><subject>Digital signal processing</subject><subject>Digital signal processors</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Internal combustion engines</subject><subject>Machine learning</subject><subject>Maintenance and repair</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Powertrain</subject><subject>Predictive maintenance</subject><subject>Signal processing</subject><subject>Soft computing</subject><subject>Subsystems</subject><subject>Transmissions (automotive)</subject><subject>Vibration</subject><issn>2156-1680</issn><issn>2156-1672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kV9r2zAUxc3YoKXrB-ibYC8bLN3VH9vSY0jWblBYIemzUJwrV8G2Mkmm5NtPiUcLW6uXK6SfztW5pyiuKFwLoPKb2_V9j9cMqIAaKPB3xTmjZTWjVc3eP-8lnBWXMe4gr1JIYNV5cVhidO1AvCU3ZuwSWWLCJjk_kNUhJuyJ9YHMx-R7v3Edknv_hIGsg3EDeYhuaMnStS6ZjqyyTi73wTcYTzdm2JKVt4ksfL8f0_Fojc3j4H6PGD8WH6zpIl7-rRfFw8339eLH7O7X7c_F_G7WiJKnGUM0jFpUWyOMAUPBsAZqpUqhmq01HEuQdcWBgRBiA5wJxaXcKKY4l1vLL4rPk-4--GPfpHsXG-w6M6Afo6ZVpaTgEuqMfvoH3fkxZFNRZzWqJFQ1ZOrrRLWmQ70Zs9WT3zzHxxRbM8ao53UFZV0qfhSlE94EH2NAq_fB9SYcNAV9jE9P8emX-PKbL9ObPNqXP_zH6f3J3-0rbDtob_UpUv0cqc6RvtlU8D89DLSH</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Shankar, Karthik V</creator><creator>K, Kailasnath</creator><creator>Devasenapati, S Babu</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>7SU</scope><scope>C1K</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques</title><author>Shankar, Karthik V ; K, Kailasnath ; Devasenapati, S Babu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-2eea21fe9da4aa0a10a2c0799549cdfa3e508763020444b03249388b929338df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerometers</topic><topic>Algorithms</topic><topic>Automobiles</topic><topic>Automotive engineering</topic><topic>Decision trees</topic><topic>Detectors</topic><topic>Digital signal processing</topic><topic>Digital signal processors</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Internal combustion engines</topic><topic>Machine learning</topic><topic>Maintenance and repair</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Powertrain</topic><topic>Predictive maintenance</topic><topic>Signal processing</topic><topic>Soft computing</topic><topic>Subsystems</topic><topic>Transmissions (automotive)</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, Karthik V</creatorcontrib><creatorcontrib>K, Kailasnath</creatorcontrib><creatorcontrib>Devasenapati, S Babu</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of manufacturing, materials, and mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, Karthik V</au><au>K, Kailasnath</au><au>Devasenapati, S Babu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques</atitle><jtitle>International journal of manufacturing, materials, and mechanical engineering</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>4</volume><issue>3</issue><spage>50</spage><epage>63</epage><pages>50-63</pages><issn>2156-1680</issn><eissn>2156-1672</eissn><abstract>The increasing dependence of internal combustion engine in multitudes of application has mandated a detailed study on most of its subsystems. This paper focuses on predictive maintenance using machine learning based models. The transmission system of any power pace is often challenged due to sudden variation in applied load. Any fault in the transmission system could lead to the catastrophic failures hence need for this work. This paper deals with the identification of various fault conditions that happen in a transmission system using vibration signals acquired by an accelerometer. The acquired signals are processed to extract the statistical and spectral features. These features are used to build a machine learning model using decision tree or Random forest algorithm. The best combination of features and algorithm is evaluated and the results are presented.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/ijmmme.2014070103</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-1680 |
ispartof | International journal of manufacturing, materials, and mechanical engineering, 2014-07, Vol.4 (3), p.50-63 |
issn | 2156-1680 2156-1672 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669843807 |
source | Alma/SFX Local Collection; ProQuest Central |
subjects | Accelerometers Algorithms Automobiles Automotive engineering Decision trees Detectors Digital signal processing Digital signal processors Fault detection Faults Internal combustion engines Machine learning Maintenance and repair Mathematical models Methods Powertrain Predictive maintenance Signal processing Soft computing Subsystems Transmissions (automotive) Vibration |
title | Design of Fault Detection System for Automobile Power Train Using Digital Signal Processing and Soft Computing Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Fault%20Detection%20System%20for%20Automobile%20Power%20Train%20Using%20Digital%20Signal%20Processing%20and%20Soft%20Computing%20Techniques&rft.jtitle=International%20journal%20of%20manufacturing,%20materials,%20and%20mechanical%20engineering&rft.au=Shankar,%20Karthik%20V&rft.date=2014-07-01&rft.volume=4&rft.issue=3&rft.spage=50&rft.epage=63&rft.pages=50-63&rft.issn=2156-1680&rft.eissn=2156-1672&rft_id=info:doi/10.4018/ijmmme.2014070103&rft_dat=%3Cgale_proqu%3EA760575937%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931980670&rft_id=info:pmid/&rft_galeid=A760575937&rfr_iscdi=true |