Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo

A three‐dimensional scaffold of type I collagen and hydroxyapatite enriched with polycaprolactone nanofibers (Coll/HA/PCL), autologous mesenchymal stem cells (MSCs) in osteogenic media, and thrombocyte‐rich solution (TRS) was an optimal implant for bone regeneration in vivo in white rabbits. Nanofib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2015-02, Vol.103 (2), p.671-682
Hauptverfasser: Prosecká, E., Rampichová, M., Litvinec, A., Tonar, Z., Králíčková, M., Vojtová, L., Kochová, P., Plencner, M., Buzgo, M., Míčková, A., Jančář, J., Amler, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 682
container_issue 2
container_start_page 671
container_title Journal of biomedical materials research. Part A
container_volume 103
creator Prosecká, E.
Rampichová, M.
Litvinec, A.
Tonar, Z.
Králíčková, M.
Vojtová, L.
Kochová, P.
Plencner, M.
Buzgo, M.
Míčková, A.
Jančář, J.
Amler, E.
description A three‐dimensional scaffold of type I collagen and hydroxyapatite enriched with polycaprolactone nanofibers (Coll/HA/PCL), autologous mesenchymal stem cells (MSCs) in osteogenic media, and thrombocyte‐rich solution (TRS) was an optimal implant for bone regeneration in vivo in white rabbits. Nanofibers optimized the viscoelastic properties of the Coll/HA scaffold for bone regeneration. MSCs and TRS in the composite scaffold improved bone regeneration. Three types of Coll/HA/PCL scaffold were prepared: an MSC‐enriched scaffold, a TRS‐enriched scaffold, and a scaffold enriched with both MSCs and TRS. These scaffolds were implanted into femoral condyle defects 6 mm in diameter and 10‐mm deep. Untreated defects were used as a control. Macroscopic and histological analyses of the regenerated tissue from all groups were performed 12 weeks after implantation. The highest volume and most uniform distribution of newly formed bone occurred in defects treated with scaffolds enriched with both MSCs and TRS compared with that in defects treated with scaffolds enriched by either component alone. The modulus of elasticity in compressive testing was significantly higher in the Coll/HA/PCL scaffold than those without nanofibers. The composite Coll scaffold functionalized with PCL nanofibers and enriched with MSCs and TRS appears to be a novel treatment for bone defects. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 671–682, 2015.
doi_str_mv 10.1002/jbm.a.35216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669841883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669841883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5476-92eaf3da5b7687ae3989effc615bcccdec8b861dfb02ec8ee60ed7b4b8008903</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEoqVw4o4scUGCbJ04cZxjWUGhKn-kVuVo2c6k8eLYW9tpm8_FF8Tptj1w4DSj0e-9edLLstcFXhUYl4cbOa7EitRlQZ9k-0Vdl3nV0vrpsldtTsqW7mUvQtgkmOK6fJ7tlRUjjJJqP_uzdsaIS7CHw9x5dzuLrYg6AgpK9L0zHQLrtRqgQzc6DmjrzKzE1jsjVHQWkBXW9VqCDx9QHLwbpVNzhHwRoeDMFLWzSNgOjRDAqmEehUEhwogUGBNQ8hpdhIA8pBjgxZ1AW2SEvwQklycd9KDicrzW1-5l9qwXJsCr-3mQnX_-dL7-kp_-OP66PjrNVV01NG9LED3pRC0byhoBpGUt9L2iRS2VUh0oJhktul7iMu0AFEPXyEoyjFmLyUH2bmebEl5NECIfdVgyCwtuCrygtGVVwRhJ6Nt_0I2bvE3heNFQykjVVgv1fkcp70Lw0POt16PwMy8wX6rkqUou-F2ViX5z7znJEbpH9qG7BJQ74EYbmP_nxU8-fjt6cM13Ip0quH0UCf-b04Y0Nf_1_ZjTnxdnFyeM8DPyF_Nov1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766834943</pqid></control><display><type>article</type><title>Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Prosecká, E. ; Rampichová, M. ; Litvinec, A. ; Tonar, Z. ; Králíčková, M. ; Vojtová, L. ; Kochová, P. ; Plencner, M. ; Buzgo, M. ; Míčková, A. ; Jančář, J. ; Amler, E.</creator><creatorcontrib>Prosecká, E. ; Rampichová, M. ; Litvinec, A. ; Tonar, Z. ; Králíčková, M. ; Vojtová, L. ; Kochová, P. ; Plencner, M. ; Buzgo, M. ; Míčková, A. ; Jančář, J. ; Amler, E.</creatorcontrib><description>A three‐dimensional scaffold of type I collagen and hydroxyapatite enriched with polycaprolactone nanofibers (Coll/HA/PCL), autologous mesenchymal stem cells (MSCs) in osteogenic media, and thrombocyte‐rich solution (TRS) was an optimal implant for bone regeneration in vivo in white rabbits. Nanofibers optimized the viscoelastic properties of the Coll/HA scaffold for bone regeneration. MSCs and TRS in the composite scaffold improved bone regeneration. Three types of Coll/HA/PCL scaffold were prepared: an MSC‐enriched scaffold, a TRS‐enriched scaffold, and a scaffold enriched with both MSCs and TRS. These scaffolds were implanted into femoral condyle defects 6 mm in diameter and 10‐mm deep. Untreated defects were used as a control. Macroscopic and histological analyses of the regenerated tissue from all groups were performed 12 weeks after implantation. The highest volume and most uniform distribution of newly formed bone occurred in defects treated with scaffolds enriched with both MSCs and TRS compared with that in defects treated with scaffolds enriched by either component alone. The modulus of elasticity in compressive testing was significantly higher in the Coll/HA/PCL scaffold than those without nanofibers. The composite Coll scaffold functionalized with PCL nanofibers and enriched with MSCs and TRS appears to be a novel treatment for bone defects. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 671–682, 2015.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35216</identifier><identifier>PMID: 24838634</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Blood Platelets - chemistry ; Bone Regeneration ; Cells, Cultured ; Collagen - chemistry ; collagen/hydroxyapatite scaffold ; Durapatite - chemistry ; in vivo ; mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; nanofibers ; Nanofibers - chemistry ; platelet-rich plasma ; Polyesters - chemistry ; Rabbits ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2015-02, Vol.103 (2), p.671-682</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5476-92eaf3da5b7687ae3989effc615bcccdec8b861dfb02ec8ee60ed7b4b8008903</citedby><cites>FETCH-LOGICAL-c5476-92eaf3da5b7687ae3989effc615bcccdec8b861dfb02ec8ee60ed7b4b8008903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24838634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prosecká, E.</creatorcontrib><creatorcontrib>Rampichová, M.</creatorcontrib><creatorcontrib>Litvinec, A.</creatorcontrib><creatorcontrib>Tonar, Z.</creatorcontrib><creatorcontrib>Králíčková, M.</creatorcontrib><creatorcontrib>Vojtová, L.</creatorcontrib><creatorcontrib>Kochová, P.</creatorcontrib><creatorcontrib>Plencner, M.</creatorcontrib><creatorcontrib>Buzgo, M.</creatorcontrib><creatorcontrib>Míčková, A.</creatorcontrib><creatorcontrib>Jančář, J.</creatorcontrib><creatorcontrib>Amler, E.</creatorcontrib><title>Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>A three‐dimensional scaffold of type I collagen and hydroxyapatite enriched with polycaprolactone nanofibers (Coll/HA/PCL), autologous mesenchymal stem cells (MSCs) in osteogenic media, and thrombocyte‐rich solution (TRS) was an optimal implant for bone regeneration in vivo in white rabbits. Nanofibers optimized the viscoelastic properties of the Coll/HA scaffold for bone regeneration. MSCs and TRS in the composite scaffold improved bone regeneration. Three types of Coll/HA/PCL scaffold were prepared: an MSC‐enriched scaffold, a TRS‐enriched scaffold, and a scaffold enriched with both MSCs and TRS. These scaffolds were implanted into femoral condyle defects 6 mm in diameter and 10‐mm deep. Untreated defects were used as a control. Macroscopic and histological analyses of the regenerated tissue from all groups were performed 12 weeks after implantation. The highest volume and most uniform distribution of newly formed bone occurred in defects treated with scaffolds enriched with both MSCs and TRS compared with that in defects treated with scaffolds enriched by either component alone. The modulus of elasticity in compressive testing was significantly higher in the Coll/HA/PCL scaffold than those without nanofibers. The composite Coll scaffold functionalized with PCL nanofibers and enriched with MSCs and TRS appears to be a novel treatment for bone defects. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 671–682, 2015.</description><subject>Animals</subject><subject>Blood Platelets - chemistry</subject><subject>Bone Regeneration</subject><subject>Cells, Cultured</subject><subject>Collagen - chemistry</subject><subject>collagen/hydroxyapatite scaffold</subject><subject>Durapatite - chemistry</subject><subject>in vivo</subject><subject>mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>platelet-rich plasma</subject><subject>Polyesters - chemistry</subject><subject>Rabbits</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxSMEoqVw4o4scUGCbJ04cZxjWUGhKn-kVuVo2c6k8eLYW9tpm8_FF8Tptj1w4DSj0e-9edLLstcFXhUYl4cbOa7EitRlQZ9k-0Vdl3nV0vrpsldtTsqW7mUvQtgkmOK6fJ7tlRUjjJJqP_uzdsaIS7CHw9x5dzuLrYg6AgpK9L0zHQLrtRqgQzc6DmjrzKzE1jsjVHQWkBXW9VqCDx9QHLwbpVNzhHwRoeDMFLWzSNgOjRDAqmEehUEhwogUGBNQ8hpdhIA8pBjgxZ1AW2SEvwQklycd9KDicrzW1-5l9qwXJsCr-3mQnX_-dL7-kp_-OP66PjrNVV01NG9LED3pRC0byhoBpGUt9L2iRS2VUh0oJhktul7iMu0AFEPXyEoyjFmLyUH2bmebEl5NECIfdVgyCwtuCrygtGVVwRhJ6Nt_0I2bvE3heNFQykjVVgv1fkcp70Lw0POt16PwMy8wX6rkqUou-F2ViX5z7znJEbpH9qG7BJQ74EYbmP_nxU8-fjt6cM13Ip0quH0UCf-b04Y0Nf_1_ZjTnxdnFyeM8DPyF_Nov1g</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Prosecká, E.</creator><creator>Rampichová, M.</creator><creator>Litvinec, A.</creator><creator>Tonar, Z.</creator><creator>Králíčková, M.</creator><creator>Vojtová, L.</creator><creator>Kochová, P.</creator><creator>Plencner, M.</creator><creator>Buzgo, M.</creator><creator>Míčková, A.</creator><creator>Jančář, J.</creator><creator>Amler, E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201502</creationdate><title>Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo</title><author>Prosecká, E. ; Rampichová, M. ; Litvinec, A. ; Tonar, Z. ; Králíčková, M. ; Vojtová, L. ; Kochová, P. ; Plencner, M. ; Buzgo, M. ; Míčková, A. ; Jančář, J. ; Amler, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5476-92eaf3da5b7687ae3989effc615bcccdec8b861dfb02ec8ee60ed7b4b8008903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Blood Platelets - chemistry</topic><topic>Bone Regeneration</topic><topic>Cells, Cultured</topic><topic>Collagen - chemistry</topic><topic>collagen/hydroxyapatite scaffold</topic><topic>Durapatite - chemistry</topic><topic>in vivo</topic><topic>mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>platelet-rich plasma</topic><topic>Polyesters - chemistry</topic><topic>Rabbits</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prosecká, E.</creatorcontrib><creatorcontrib>Rampichová, M.</creatorcontrib><creatorcontrib>Litvinec, A.</creatorcontrib><creatorcontrib>Tonar, Z.</creatorcontrib><creatorcontrib>Králíčková, M.</creatorcontrib><creatorcontrib>Vojtová, L.</creatorcontrib><creatorcontrib>Kochová, P.</creatorcontrib><creatorcontrib>Plencner, M.</creatorcontrib><creatorcontrib>Buzgo, M.</creatorcontrib><creatorcontrib>Míčková, A.</creatorcontrib><creatorcontrib>Jančář, J.</creatorcontrib><creatorcontrib>Amler, E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prosecká, E.</au><au>Rampichová, M.</au><au>Litvinec, A.</au><au>Tonar, Z.</au><au>Králíčková, M.</au><au>Vojtová, L.</au><au>Kochová, P.</au><au>Plencner, M.</au><au>Buzgo, M.</au><au>Míčková, A.</au><au>Jančář, J.</au><au>Amler, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2015-02</date><risdate>2015</risdate><volume>103</volume><issue>2</issue><spage>671</spage><epage>682</epage><pages>671-682</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>A three‐dimensional scaffold of type I collagen and hydroxyapatite enriched with polycaprolactone nanofibers (Coll/HA/PCL), autologous mesenchymal stem cells (MSCs) in osteogenic media, and thrombocyte‐rich solution (TRS) was an optimal implant for bone regeneration in vivo in white rabbits. Nanofibers optimized the viscoelastic properties of the Coll/HA scaffold for bone regeneration. MSCs and TRS in the composite scaffold improved bone regeneration. Three types of Coll/HA/PCL scaffold were prepared: an MSC‐enriched scaffold, a TRS‐enriched scaffold, and a scaffold enriched with both MSCs and TRS. These scaffolds were implanted into femoral condyle defects 6 mm in diameter and 10‐mm deep. Untreated defects were used as a control. Macroscopic and histological analyses of the regenerated tissue from all groups were performed 12 weeks after implantation. The highest volume and most uniform distribution of newly formed bone occurred in defects treated with scaffolds enriched with both MSCs and TRS compared with that in defects treated with scaffolds enriched by either component alone. The modulus of elasticity in compressive testing was significantly higher in the Coll/HA/PCL scaffold than those without nanofibers. The composite Coll scaffold functionalized with PCL nanofibers and enriched with MSCs and TRS appears to be a novel treatment for bone defects. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 671–682, 2015.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24838634</pmid><doi>10.1002/jbm.a.35216</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2015-02, Vol.103 (2), p.671-682
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1669841883
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Animals
Blood Platelets - chemistry
Bone Regeneration
Cells, Cultured
Collagen - chemistry
collagen/hydroxyapatite scaffold
Durapatite - chemistry
in vivo
mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
nanofibers
Nanofibers - chemistry
platelet-rich plasma
Polyesters - chemistry
Rabbits
Tissue Scaffolds - chemistry
title Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T03%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collagen/hydroxyapatite%20scaffold%20enriched%20with%20polycaprolactone%20nanofibers,%20thrombocyte-rich%20solution%20and%20mesenchymal%20stem%20cells%20promotes%20regeneration%20in%20large%20bone%20defect%20in%20vivo&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Proseck%C3%A1,%20E.&rft.date=2015-02&rft.volume=103&rft.issue=2&rft.spage=671&rft.epage=682&rft.pages=671-682&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35216&rft_dat=%3Cproquest_cross%3E1669841883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766834943&rft_id=info:pmid/24838634&rfr_iscdi=true