Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting

Cobalt phosphate (Co-Pi) is photo-electrodeposited on TiO2 nanowire arrays in Co(2+) containing phosphate buffer. The resulting composite photoanode shows a generally enhanced photocurrent near the flat band potential region, and represents a 2.3 times improved photoconversion efficiency compared to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2015-04, Vol.7 (15), p.6722-6728
Hauptverfasser: Ai, Guanjie, Mo, Rong, Li, Hongxing, Zhong, Jianxin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cobalt phosphate (Co-Pi) is photo-electrodeposited on TiO2 nanowire arrays in Co(2+) containing phosphate buffer. The resulting composite photoanode shows a generally enhanced photocurrent near the flat band potential region, and represents a 2.3 times improved photoconversion efficiency compared to that of pristine TiO2 in a neutral electrolyte. A negative effect on the photocurrent generation is also observed when loading TiO2 with a relatively thick Co-Pi layer, which is demonstrated to be due to the poor photohole transfer kinetics in the Co-Pi layer. Moreover, we find that Co-Pi can facilitate the photoelectrochemical performance of TiO2 over a wide pH range from 1-14. This improved activity is studied in detail by optical and electrochemical analyses. It is suggested that the mechanism of the overpotential-demanding water oxidation reaction is changed to a facile pathway by the Co-based electrocatalyst. At the same time, the more significant band bending is induced by the Co-Pi catalyst decreasing the charge recombination. This work provides a feasible route to reduce the external power needed to drive water splitting by coupling an electrocatalyst with a photocatalyst, as well as mechanistic insights important for other Co-Pi modified photoelectrodes for solar-driven water splitting.
ISSN:2040-3372
DOI:10.1039/c5nr00863h