MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers

We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2015-01, Vol.23 (1), p.312-329
Hauptverfasser: Jasion, G T, Shrimpton, J S, Chen, Y, Bradley, T, Richardson, D J, Poletti, F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 1
container_start_page 312
container_title Optics express
container_volume 23
creator Jasion, G T
Shrimpton, J S
Chen, Y
Bradley, T
Richardson, D J
Poletti, F
description We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an extension of the Discrete Element Method; it determines forces on the nodes in the microstructure to progressively update their position along the neck-down region, until the fiber reaches a final frozen state. The model is validated through simulation of 6 Hollow Core Photonic Band Gap Fibers (HC-PBGFs) and is shown to predict accurately the final fiber dimensions and cross-sectional distortions. The model is vastly more capable than other state of the art models and allows fast exploration of wide drawing parameter spaces, eliminating the need for expensive and time-consuming empirical parameter scans.
doi_str_mv 10.1364/OE.23.000312
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669835466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669835466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-fbe46271b2db8c92a869657cefd1b01258e49b2ced616484327d7a8f91d7a20b3</originalsourceid><addsrcrecordid>eNpNkM1LAzEUxIMotlZvniVHBVvz1WTXm5T1A7r0UD0vu5sXurLb1CRr8b83pa14mgfvxzAzCF1TMqFciodFNmF8QgjhlJ2gISWpGAuSqNN_9wBdeP9JCBUqVedowKYJn0qVDJHNm9rZZXB9HXoHOGuhg3XAOYSV1fg2X2b53SP-bnxte49Na7e4sxpabKzDYQXx5UJftli7coutwd3O0B8NNbab0NTxb5oKnL9EZ6ZsPVwddIQ-nrP32et4vnh5mz3NxzVnaRibCoRkilZMV0mdsjKRqZyqGoymFaExP4i0YjVoSaVIBGdKqzIxKY3CSMVH6Hbvu3H2qwcfii5WgLYt1xCLFFTKNG4gpIzo_R7d5fYOTLFxTVe6n4KSYjdxscgKxov9xBG_OTj3VQf6Dz5uyn8BaJp3Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669835466</pqid></control><display><type>article</type><title>MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Jasion, G T ; Shrimpton, J S ; Chen, Y ; Bradley, T ; Richardson, D J ; Poletti, F</creator><creatorcontrib>Jasion, G T ; Shrimpton, J S ; Chen, Y ; Bradley, T ; Richardson, D J ; Poletti, F</creatorcontrib><description>We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an extension of the Discrete Element Method; it determines forces on the nodes in the microstructure to progressively update their position along the neck-down region, until the fiber reaches a final frozen state. The model is validated through simulation of 6 Hollow Core Photonic Band Gap Fibers (HC-PBGFs) and is shown to predict accurately the final fiber dimensions and cross-sectional distortions. The model is vastly more capable than other state of the art models and allows fast exploration of wide drawing parameter spaces, eliminating the need for expensive and time-consuming empirical parameter scans.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.23.000312</identifier><identifier>PMID: 25835678</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2015-01, Vol.23 (1), p.312-329</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-fbe46271b2db8c92a869657cefd1b01258e49b2ced616484327d7a8f91d7a20b3</citedby><cites>FETCH-LOGICAL-c329t-fbe46271b2db8c92a869657cefd1b01258e49b2ced616484327d7a8f91d7a20b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25835678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jasion, G T</creatorcontrib><creatorcontrib>Shrimpton, J S</creatorcontrib><creatorcontrib>Chen, Y</creatorcontrib><creatorcontrib>Bradley, T</creatorcontrib><creatorcontrib>Richardson, D J</creatorcontrib><creatorcontrib>Poletti, F</creatorcontrib><title>MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an extension of the Discrete Element Method; it determines forces on the nodes in the microstructure to progressively update their position along the neck-down region, until the fiber reaches a final frozen state. The model is validated through simulation of 6 Hollow Core Photonic Band Gap Fibers (HC-PBGFs) and is shown to predict accurately the final fiber dimensions and cross-sectional distortions. The model is vastly more capable than other state of the art models and allows fast exploration of wide drawing parameter spaces, eliminating the need for expensive and time-consuming empirical parameter scans.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEUxIMotlZvniVHBVvz1WTXm5T1A7r0UD0vu5sXurLb1CRr8b83pa14mgfvxzAzCF1TMqFciodFNmF8QgjhlJ2gISWpGAuSqNN_9wBdeP9JCBUqVedowKYJn0qVDJHNm9rZZXB9HXoHOGuhg3XAOYSV1fg2X2b53SP-bnxte49Na7e4sxpabKzDYQXx5UJftli7coutwd3O0B8NNbab0NTxb5oKnL9EZ6ZsPVwddIQ-nrP32et4vnh5mz3NxzVnaRibCoRkilZMV0mdsjKRqZyqGoymFaExP4i0YjVoSaVIBGdKqzIxKY3CSMVH6Hbvu3H2qwcfii5WgLYt1xCLFFTKNG4gpIzo_R7d5fYOTLFxTVe6n4KSYjdxscgKxov9xBG_OTj3VQf6Dz5uyn8BaJp3Vw</recordid><startdate>20150112</startdate><enddate>20150112</enddate><creator>Jasion, G T</creator><creator>Shrimpton, J S</creator><creator>Chen, Y</creator><creator>Bradley, T</creator><creator>Richardson, D J</creator><creator>Poletti, F</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150112</creationdate><title>MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers</title><author>Jasion, G T ; Shrimpton, J S ; Chen, Y ; Bradley, T ; Richardson, D J ; Poletti, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-fbe46271b2db8c92a869657cefd1b01258e49b2ced616484327d7a8f91d7a20b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasion, G T</creatorcontrib><creatorcontrib>Shrimpton, J S</creatorcontrib><creatorcontrib>Chen, Y</creatorcontrib><creatorcontrib>Bradley, T</creatorcontrib><creatorcontrib>Richardson, D J</creatorcontrib><creatorcontrib>Poletti, F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasion, G T</au><au>Shrimpton, J S</au><au>Chen, Y</au><au>Bradley, T</au><au>Richardson, D J</au><au>Poletti, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2015-01-12</date><risdate>2015</risdate><volume>23</volume><issue>1</issue><spage>312</spage><epage>329</epage><pages>312-329</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an extension of the Discrete Element Method; it determines forces on the nodes in the microstructure to progressively update their position along the neck-down region, until the fiber reaches a final frozen state. The model is validated through simulation of 6 Hollow Core Photonic Band Gap Fibers (HC-PBGFs) and is shown to predict accurately the final fiber dimensions and cross-sectional distortions. The model is vastly more capable than other state of the art models and allows fast exploration of wide drawing parameter spaces, eliminating the need for expensive and time-consuming empirical parameter scans.</abstract><cop>United States</cop><pmid>25835678</pmid><doi>10.1364/OE.23.000312</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2015-01, Vol.23 (1), p.312-329
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_1669835466
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroStructure%20Element%20Method%20(MSEM):%20viscous%20flow%20model%20for%20the%20virtual%20draw%20of%20microstructured%20optical%20fibers&rft.jtitle=Optics%20express&rft.au=Jasion,%20G%20T&rft.date=2015-01-12&rft.volume=23&rft.issue=1&rft.spage=312&rft.epage=329&rft.pages=312-329&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.23.000312&rft_dat=%3Cproquest_cross%3E1669835466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669835466&rft_id=info:pmid/25835678&rfr_iscdi=true