MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers

We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2015-01, Vol.23 (1), p.312-329
Hauptverfasser: Jasion, G T, Shrimpton, J S, Chen, Y, Bradley, T, Richardson, D J, Poletti, F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new method to accurately model the structural evolution of a microstructured fiber (MOF) during its drawing process, given its initial preform structure and draw conditions. The method, applicable to a broad range of MOFs with high air-filling fraction and thin glass membranes, is an extension of the Discrete Element Method; it determines forces on the nodes in the microstructure to progressively update their position along the neck-down region, until the fiber reaches a final frozen state. The model is validated through simulation of 6 Hollow Core Photonic Band Gap Fibers (HC-PBGFs) and is shown to predict accurately the final fiber dimensions and cross-sectional distortions. The model is vastly more capable than other state of the art models and allows fast exploration of wide drawing parameter spaces, eliminating the need for expensive and time-consuming empirical parameter scans.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.23.000312