Stress and strain partitioning in a AgNi fibre composite under transverse loading finite element modelling and experimental study

The stress-strain behaviour of a AgNi fiber composite under transverse loading was modelled by two-dimensional finite element calculations and compared to experiments in plane strain on composites with fiber volume fractions between 25 and 75%. Local strains after deformation were assessed by micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 1993-07, Vol.1 (3), p.195-202
Hauptverfasser: Dietrich, Ch, Poech, M.H., Fischmeister, H.F., Schmauder, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 3
container_start_page 195
container_title Computational materials science
container_volume 1
creator Dietrich, Ch
Poech, M.H.
Fischmeister, H.F.
Schmauder, S.
description The stress-strain behaviour of a AgNi fiber composite under transverse loading was modelled by two-dimensional finite element calculations and compared to experiments in plane strain on composites with fiber volume fractions between 25 and 75%. Local strains after deformation were assessed by microhardness indentation measurements to obtain experimental data for stress and strain partitioning between the phases. Using these partitioning data, the flow curves of the composites can be reconstructed from the experimentally determined flow curves of the two components. Local strains are also derived from the FE calculations, which, in addition, yield data on the stress triaxiality resulting from the condition of strain compatibility at the phase boundaries. Fair agreement between calculation and experiment indicates that FE modelling is a useful tool for studying the deformation behaviour of composites up to large plastic strains.
doi_str_mv 10.1016/0927-0256(93)90011-B
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16684853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>092702569390011B</els_id><sourcerecordid>67495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-e6f9b287acab903d625ea1b27be2b88a31ce34afa529ba666394cce5a983a5d33</originalsourceid><addsrcrecordid>eNp9kE1uFDEQhS0EEkPgBiy8QAgWDf7pdtsbpCTiT4pgAaytars6MuqxG7snSvbcgatwKs6AzURZsrKs9716VY-Qp5y94oyr18yIsWNiUC-MfGkY47w7u0d2XI-mY5rx-2R3hzwkj0r5XhlltNiRn1-2jKVQiJ6WLUOIdIW8hS2kGOIlrX-gp5d_fv3-FOgcpozUpf2aStiQHqLHTKsrlivMBemSwDfXHGLTccE9xo3uk8dlaUKLwesVc2gCLDXz4G8ekwczLAWf3L4n5Nu7t1_PP3QXn99_PD-96JwwautQzWYSegQHk2HSKzEg8EmME4pJa5DcoexhhkGYCZRS0vTO4QBGSxi8lCfk-XHumtOPA5bN7kNxdTWImA7FcqV0r4cG9kfQ5VRKxtmudWPIN5Yz2yq3rU_b-rRG2n-V27Nqe3Y7H4qDZa7FuFDuvFL3wyj6ir05YlhvvQqYbXEBo0MfMrrN-hT-n_MXj3CZsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16684853</pqid></control><display><type>article</type><title>Stress and strain partitioning in a AgNi fibre composite under transverse loading finite element modelling and experimental study</title><source>Elsevier ScienceDirect Journals</source><creator>Dietrich, Ch ; Poech, M.H. ; Fischmeister, H.F. ; Schmauder, S.</creator><creatorcontrib>Dietrich, Ch ; Poech, M.H. ; Fischmeister, H.F. ; Schmauder, S.</creatorcontrib><description>The stress-strain behaviour of a AgNi fiber composite under transverse loading was modelled by two-dimensional finite element calculations and compared to experiments in plane strain on composites with fiber volume fractions between 25 and 75%. Local strains after deformation were assessed by microhardness indentation measurements to obtain experimental data for stress and strain partitioning between the phases. Using these partitioning data, the flow curves of the composites can be reconstructed from the experimentally determined flow curves of the two components. Local strains are also derived from the FE calculations, which, in addition, yield data on the stress triaxiality resulting from the condition of strain compatibility at the phase boundaries. Fair agreement between calculation and experiment indicates that FE modelling is a useful tool for studying the deformation behaviour of composites up to large plastic strains.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/0927-0256(93)90011-B</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Elasticity. Plasticity ; Exact sciences and technology ; Mechanical and acoustical properties of condensed matter ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical properties of solids ; Metals. Metallurgy ; Physics</subject><ispartof>Computational materials science, 1993-07, Vol.1 (3), p.195-202</ispartof><rights>1993</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-e6f9b287acab903d625ea1b27be2b88a31ce34afa529ba666394cce5a983a5d33</citedby><cites>FETCH-LOGICAL-c296t-e6f9b287acab903d625ea1b27be2b88a31ce34afa529ba666394cce5a983a5d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/092702569390011B$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3845724$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dietrich, Ch</creatorcontrib><creatorcontrib>Poech, M.H.</creatorcontrib><creatorcontrib>Fischmeister, H.F.</creatorcontrib><creatorcontrib>Schmauder, S.</creatorcontrib><title>Stress and strain partitioning in a AgNi fibre composite under transverse loading finite element modelling and experimental study</title><title>Computational materials science</title><description>The stress-strain behaviour of a AgNi fiber composite under transverse loading was modelled by two-dimensional finite element calculations and compared to experiments in plane strain on composites with fiber volume fractions between 25 and 75%. Local strains after deformation were assessed by microhardness indentation measurements to obtain experimental data for stress and strain partitioning between the phases. Using these partitioning data, the flow curves of the composites can be reconstructed from the experimentally determined flow curves of the two components. Local strains are also derived from the FE calculations, which, in addition, yield data on the stress triaxiality resulting from the condition of strain compatibility at the phase boundaries. Fair agreement between calculation and experiment indicates that FE modelling is a useful tool for studying the deformation behaviour of composites up to large plastic strains.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kE1uFDEQhS0EEkPgBiy8QAgWDf7pdtsbpCTiT4pgAaytars6MuqxG7snSvbcgatwKs6AzURZsrKs9716VY-Qp5y94oyr18yIsWNiUC-MfGkY47w7u0d2XI-mY5rx-2R3hzwkj0r5XhlltNiRn1-2jKVQiJ6WLUOIdIW8hS2kGOIlrX-gp5d_fv3-FOgcpozUpf2aStiQHqLHTKsrlivMBemSwDfXHGLTccE9xo3uk8dlaUKLwesVc2gCLDXz4G8ekwczLAWf3L4n5Nu7t1_PP3QXn99_PD-96JwwautQzWYSegQHk2HSKzEg8EmME4pJa5DcoexhhkGYCZRS0vTO4QBGSxi8lCfk-XHumtOPA5bN7kNxdTWImA7FcqV0r4cG9kfQ5VRKxtmudWPIN5Yz2yq3rU_b-rRG2n-V27Nqe3Y7H4qDZa7FuFDuvFL3wyj6ir05YlhvvQqYbXEBo0MfMrrN-hT-n_MXj3CZsA</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Dietrich, Ch</creator><creator>Poech, M.H.</creator><creator>Fischmeister, H.F.</creator><creator>Schmauder, S.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930701</creationdate><title>Stress and strain partitioning in a AgNi fibre composite under transverse loading finite element modelling and experimental study</title><author>Dietrich, Ch ; Poech, M.H. ; Fischmeister, H.F. ; Schmauder, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-e6f9b287acab903d625ea1b27be2b88a31ce34afa529ba666394cce5a983a5d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dietrich, Ch</creatorcontrib><creatorcontrib>Poech, M.H.</creatorcontrib><creatorcontrib>Fischmeister, H.F.</creatorcontrib><creatorcontrib>Schmauder, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dietrich, Ch</au><au>Poech, M.H.</au><au>Fischmeister, H.F.</au><au>Schmauder, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress and strain partitioning in a AgNi fibre composite under transverse loading finite element modelling and experimental study</atitle><jtitle>Computational materials science</jtitle><date>1993-07-01</date><risdate>1993</risdate><volume>1</volume><issue>3</issue><spage>195</spage><epage>202</epage><pages>195-202</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>The stress-strain behaviour of a AgNi fiber composite under transverse loading was modelled by two-dimensional finite element calculations and compared to experiments in plane strain on composites with fiber volume fractions between 25 and 75%. Local strains after deformation were assessed by microhardness indentation measurements to obtain experimental data for stress and strain partitioning between the phases. Using these partitioning data, the flow curves of the composites can be reconstructed from the experimentally determined flow curves of the two components. Local strains are also derived from the FE calculations, which, in addition, yield data on the stress triaxiality resulting from the condition of strain compatibility at the phase boundaries. Fair agreement between calculation and experiment indicates that FE modelling is a useful tool for studying the deformation behaviour of composites up to large plastic strains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0927-0256(93)90011-B</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 1993-07, Vol.1 (3), p.195-202
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_16684853
source Elsevier ScienceDirect Journals
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Deformation and plasticity (including yield, ductility, and superplasticity)
Elasticity. Plasticity
Exact sciences and technology
Mechanical and acoustical properties of condensed matter
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanical properties of solids
Metals. Metallurgy
Physics
title Stress and strain partitioning in a AgNi fibre composite under transverse loading finite element modelling and experimental study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20and%20strain%20partitioning%20in%20a%20Ag%EE%97%B8Ni%20fibre%20composite%20under%20transverse%20loading%20finite%20element%20modelling%20and%20experimental%20study&rft.jtitle=Computational%20materials%20science&rft.au=Dietrich,%20Ch&rft.date=1993-07-01&rft.volume=1&rft.issue=3&rft.spage=195&rft.epage=202&rft.pages=195-202&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/0927-0256(93)90011-B&rft_dat=%3Cproquest_cross%3E67495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16684853&rft_id=info:pmid/&rft_els_id=092702569390011B&rfr_iscdi=true