Ultrasensitive fluorescent proteins for imaging neuronal activity

Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2013-07, Vol.499 (7458), p.295-300
Hauptverfasser: Chen, Tsai-Wen, Wardill, Trevor J., Sun, Yi, Pulver, Stefan R., Renninger, Sabine L., Baohan, Amy, Schreiter, Eric R., Kerr, Rex A., Orger, Michael B., Jayaraman, Vivek, Looger, Loren L., Svoboda, Karel, Kim, Douglas S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 7458
container_start_page 295
container_title Nature (London)
container_volume 499
creator Chen, Tsai-Wen
Wardill, Trevor J.
Sun, Yi
Pulver, Stefan R.
Renninger, Sabine L.
Baohan, Amy
Schreiter, Eric R.
Kerr, Rex A.
Orger, Michael B.
Jayaraman, Vivek
Looger, Loren L.
Svoboda, Karel
Kim, Douglas S.
description Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo . In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales. Sensitive protein sensors of calcium have been created; these new tools are shown to report neural activity in cultured neurons, flies and zebrafish and can detect single action potentials and synaptic activation in the mouse visual cortex in vivo . A new sensor for neural activity Genetically encoded calcium sensors have brought neuronal recording to the tiny brains of invertebrates, but the methodology has lagged behind classical electrophysiology in vertebrates. Now Douglas Kim and colleagues have used selective mutagenesis to engineer a new ultrasensitive probe, GCaMP6, demonstrating improved spatial and temporal resolution in vivo , from flies to zebrafish. In addition, in mouse visual cortex GCaMP6 can reliably detect single action potentials and single-spine orientation tuning. GCaMP6 sensors can be used to image large groups of neurons as well as tiny synaptic compartments over multiple imaging sessions separated by months, offering a flexible new tool for brain research and calcium signalling studies.
doi_str_mv 10.1038/nature12354
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1668271405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337370689</galeid><sourcerecordid>A337370689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-4da3f6079af25217d8c735f6d371858ec650a0b12cf5d4004b779289c9c3f4593</originalsourceid><addsrcrecordid>eNp10s1rFDEUAPBBFFurJ-8yWARFp-Y7meOy-FEoCtriMWQzL0PKbGabZMT-92bpandlJIdA8st7L8mrqucYnWFE1ftg8hQBE8rZg-oYMykaJpR8WB0jRFSDFBVH1ZOUrhFCHEv2uDoiVAlFuDquFldDjiZBSD77n1C7YRojJAsh15s4ZvAh1W6MtV-b3oe-DjDFMZihNrYc8Pn2afXImSHBs918Ul19_HC5_NxcfP10vlxcNFZwkRvWGeoEkq1xhBMsO2Ul5U50VGLFFRSFDFphYh3vGEJsJWVLVGtbSx3jLT2pXt_FLWXdTJCyXvtS5zCYAOOUNBblShIzxAs9_Ydej1MsRRfFcMsQYYTdq94MoH1wY3kJuw2qF5RKKpFQ27TNjOohQDTDGMD5snzgX854u_E3eh-dzaAyOlh7Oxv1zcGBYjL8yr2ZUtLn378d2rf_t4vLH8svs9rGMaUITm9i-et4qzHS2_7Se_1V9Ivdy06rNXR_7Z-GKuDVDphkzeCiCdaneycFagWjxb27c6lshR7i3hfN5P0NTBHiJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419402424</pqid></control><display><type>article</type><title>Ultrasensitive fluorescent proteins for imaging neuronal activity</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Chen, Tsai-Wen ; Wardill, Trevor J. ; Sun, Yi ; Pulver, Stefan R. ; Renninger, Sabine L. ; Baohan, Amy ; Schreiter, Eric R. ; Kerr, Rex A. ; Orger, Michael B. ; Jayaraman, Vivek ; Looger, Loren L. ; Svoboda, Karel ; Kim, Douglas S.</creator><creatorcontrib>Chen, Tsai-Wen ; Wardill, Trevor J. ; Sun, Yi ; Pulver, Stefan R. ; Renninger, Sabine L. ; Baohan, Amy ; Schreiter, Eric R. ; Kerr, Rex A. ; Orger, Michael B. ; Jayaraman, Vivek ; Looger, Loren L. ; Svoboda, Karel ; Kim, Douglas S.</creatorcontrib><description>Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo . In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales. Sensitive protein sensors of calcium have been created; these new tools are shown to report neural activity in cultured neurons, flies and zebrafish and can detect single action potentials and synaptic activation in the mouse visual cortex in vivo . A new sensor for neural activity Genetically encoded calcium sensors have brought neuronal recording to the tiny brains of invertebrates, but the methodology has lagged behind classical electrophysiology in vertebrates. Now Douglas Kim and colleagues have used selective mutagenesis to engineer a new ultrasensitive probe, GCaMP6, demonstrating improved spatial and temporal resolution in vivo , from flies to zebrafish. In addition, in mouse visual cortex GCaMP6 can reliably detect single action potentials and single-spine orientation tuning. GCaMP6 sensors can be used to image large groups of neurons as well as tiny synaptic compartments over multiple imaging sessions separated by months, offering a flexible new tool for brain research and calcium signalling studies.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature12354</identifier><identifier>PMID: 23868258</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1888/2249 ; Action Potentials ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Calcium-Binding Proteins - chemistry ; Calcium-Binding Proteins - genetics ; Cells, Cultured ; Danio rerio ; Dendritic Spines - metabolism ; Eye and associated structures. Visual pathways and centers. Vision ; Fluorescent Dyes - chemistry ; Fluorescent proteins ; Fundamental and applied biological sciences. Psychology ; GABAergic Neurons - metabolism ; Humanities and Social Sciences ; Insects ; Luminescent Proteins - chemistry ; Luminescent Proteins - genetics ; Mice ; Molecular Imaging ; multidisciplinary ; Mutagenesis ; Mutation ; Neuroimaging ; Neurology ; Neurons ; Properties ; Protein Engineering ; Proteins ; Pyramidal Cells - metabolism ; Pyramidal Cells - physiology ; Science ; Sensors ; Spine ; Vertebrates: nervous system and sense organs ; Visual Cortex - cytology ; Visual Cortex - physiology</subject><ispartof>Nature (London), 2013-07, Vol.499 (7458), p.295-300</ispartof><rights>Springer Nature Limited 2013</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 18, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-4da3f6079af25217d8c735f6d371858ec650a0b12cf5d4004b779289c9c3f4593</citedby><cites>FETCH-LOGICAL-c656t-4da3f6079af25217d8c735f6d371858ec650a0b12cf5d4004b779289c9c3f4593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature12354$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature12354$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27609643$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23868258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Tsai-Wen</creatorcontrib><creatorcontrib>Wardill, Trevor J.</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Pulver, Stefan R.</creatorcontrib><creatorcontrib>Renninger, Sabine L.</creatorcontrib><creatorcontrib>Baohan, Amy</creatorcontrib><creatorcontrib>Schreiter, Eric R.</creatorcontrib><creatorcontrib>Kerr, Rex A.</creatorcontrib><creatorcontrib>Orger, Michael B.</creatorcontrib><creatorcontrib>Jayaraman, Vivek</creatorcontrib><creatorcontrib>Looger, Loren L.</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><creatorcontrib>Kim, Douglas S.</creatorcontrib><title>Ultrasensitive fluorescent proteins for imaging neuronal activity</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo . In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales. Sensitive protein sensors of calcium have been created; these new tools are shown to report neural activity in cultured neurons, flies and zebrafish and can detect single action potentials and synaptic activation in the mouse visual cortex in vivo . A new sensor for neural activity Genetically encoded calcium sensors have brought neuronal recording to the tiny brains of invertebrates, but the methodology has lagged behind classical electrophysiology in vertebrates. Now Douglas Kim and colleagues have used selective mutagenesis to engineer a new ultrasensitive probe, GCaMP6, demonstrating improved spatial and temporal resolution in vivo , from flies to zebrafish. In addition, in mouse visual cortex GCaMP6 can reliably detect single action potentials and single-spine orientation tuning. GCaMP6 sensors can be used to image large groups of neurons as well as tiny synaptic compartments over multiple imaging sessions separated by months, offering a flexible new tool for brain research and calcium signalling studies.</description><subject>631/1647/1888/2249</subject><subject>Action Potentials</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Calcium-Binding Proteins - chemistry</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Cells, Cultured</subject><subject>Danio rerio</subject><subject>Dendritic Spines - metabolism</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent proteins</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABAergic Neurons - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Insects</subject><subject>Luminescent Proteins - chemistry</subject><subject>Luminescent Proteins - genetics</subject><subject>Mice</subject><subject>Molecular Imaging</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Properties</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - physiology</subject><subject>Science</subject><subject>Sensors</subject><subject>Spine</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - physiology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s1rFDEUAPBBFFurJ-8yWARFp-Y7meOy-FEoCtriMWQzL0PKbGabZMT-92bpandlJIdA8st7L8mrqucYnWFE1ftg8hQBE8rZg-oYMykaJpR8WB0jRFSDFBVH1ZOUrhFCHEv2uDoiVAlFuDquFldDjiZBSD77n1C7YRojJAsh15s4ZvAh1W6MtV-b3oe-DjDFMZihNrYc8Pn2afXImSHBs918Ul19_HC5_NxcfP10vlxcNFZwkRvWGeoEkq1xhBMsO2Ul5U50VGLFFRSFDFphYh3vGEJsJWVLVGtbSx3jLT2pXt_FLWXdTJCyXvtS5zCYAOOUNBblShIzxAs9_Ydej1MsRRfFcMsQYYTdq94MoH1wY3kJuw2qF5RKKpFQ27TNjOohQDTDGMD5snzgX854u_E3eh-dzaAyOlh7Oxv1zcGBYjL8yr2ZUtLn378d2rf_t4vLH8svs9rGMaUITm9i-et4qzHS2_7Se_1V9Ivdy06rNXR_7Z-GKuDVDphkzeCiCdaneycFagWjxb27c6lshR7i3hfN5P0NTBHiJA</recordid><startdate>20130718</startdate><enddate>20130718</enddate><creator>Chen, Tsai-Wen</creator><creator>Wardill, Trevor J.</creator><creator>Sun, Yi</creator><creator>Pulver, Stefan R.</creator><creator>Renninger, Sabine L.</creator><creator>Baohan, Amy</creator><creator>Schreiter, Eric R.</creator><creator>Kerr, Rex A.</creator><creator>Orger, Michael B.</creator><creator>Jayaraman, Vivek</creator><creator>Looger, Loren L.</creator><creator>Svoboda, Karel</creator><creator>Kim, Douglas S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20130718</creationdate><title>Ultrasensitive fluorescent proteins for imaging neuronal activity</title><author>Chen, Tsai-Wen ; Wardill, Trevor J. ; Sun, Yi ; Pulver, Stefan R. ; Renninger, Sabine L. ; Baohan, Amy ; Schreiter, Eric R. ; Kerr, Rex A. ; Orger, Michael B. ; Jayaraman, Vivek ; Looger, Loren L. ; Svoboda, Karel ; Kim, Douglas S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-4da3f6079af25217d8c735f6d371858ec650a0b12cf5d4004b779289c9c3f4593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/1647/1888/2249</topic><topic>Action Potentials</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Calcium-Binding Proteins - chemistry</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Cells, Cultured</topic><topic>Danio rerio</topic><topic>Dendritic Spines - metabolism</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent proteins</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABAergic Neurons - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Insects</topic><topic>Luminescent Proteins - chemistry</topic><topic>Luminescent Proteins - genetics</topic><topic>Mice</topic><topic>Molecular Imaging</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Properties</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - physiology</topic><topic>Science</topic><topic>Sensors</topic><topic>Spine</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tsai-Wen</creatorcontrib><creatorcontrib>Wardill, Trevor J.</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Pulver, Stefan R.</creatorcontrib><creatorcontrib>Renninger, Sabine L.</creatorcontrib><creatorcontrib>Baohan, Amy</creatorcontrib><creatorcontrib>Schreiter, Eric R.</creatorcontrib><creatorcontrib>Kerr, Rex A.</creatorcontrib><creatorcontrib>Orger, Michael B.</creatorcontrib><creatorcontrib>Jayaraman, Vivek</creatorcontrib><creatorcontrib>Looger, Loren L.</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><creatorcontrib>Kim, Douglas S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tsai-Wen</au><au>Wardill, Trevor J.</au><au>Sun, Yi</au><au>Pulver, Stefan R.</au><au>Renninger, Sabine L.</au><au>Baohan, Amy</au><au>Schreiter, Eric R.</au><au>Kerr, Rex A.</au><au>Orger, Michael B.</au><au>Jayaraman, Vivek</au><au>Looger, Loren L.</au><au>Svoboda, Karel</au><au>Kim, Douglas S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive fluorescent proteins for imaging neuronal activity</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-07-18</date><risdate>2013</risdate><volume>499</volume><issue>7458</issue><spage>295</spage><epage>300</epage><pages>295-300</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo . In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales. Sensitive protein sensors of calcium have been created; these new tools are shown to report neural activity in cultured neurons, flies and zebrafish and can detect single action potentials and synaptic activation in the mouse visual cortex in vivo . A new sensor for neural activity Genetically encoded calcium sensors have brought neuronal recording to the tiny brains of invertebrates, but the methodology has lagged behind classical electrophysiology in vertebrates. Now Douglas Kim and colleagues have used selective mutagenesis to engineer a new ultrasensitive probe, GCaMP6, demonstrating improved spatial and temporal resolution in vivo , from flies to zebrafish. In addition, in mouse visual cortex GCaMP6 can reliably detect single action potentials and single-spine orientation tuning. GCaMP6 sensors can be used to image large groups of neurons as well as tiny synaptic compartments over multiple imaging sessions separated by months, offering a flexible new tool for brain research and calcium signalling studies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23868258</pmid><doi>10.1038/nature12354</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2013-07, Vol.499 (7458), p.295-300
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_1668271405
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/1647/1888/2249
Action Potentials
Animals
Biological and medical sciences
Calcium - metabolism
Calcium-Binding Proteins - chemistry
Calcium-Binding Proteins - genetics
Cells, Cultured
Danio rerio
Dendritic Spines - metabolism
Eye and associated structures. Visual pathways and centers. Vision
Fluorescent Dyes - chemistry
Fluorescent proteins
Fundamental and applied biological sciences. Psychology
GABAergic Neurons - metabolism
Humanities and Social Sciences
Insects
Luminescent Proteins - chemistry
Luminescent Proteins - genetics
Mice
Molecular Imaging
multidisciplinary
Mutagenesis
Mutation
Neuroimaging
Neurology
Neurons
Properties
Protein Engineering
Proteins
Pyramidal Cells - metabolism
Pyramidal Cells - physiology
Science
Sensors
Spine
Vertebrates: nervous system and sense organs
Visual Cortex - cytology
Visual Cortex - physiology
title Ultrasensitive fluorescent proteins for imaging neuronal activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20fluorescent%20proteins%20for%20imaging%20neuronal%20activity&rft.jtitle=Nature%20(London)&rft.au=Chen,%20Tsai-Wen&rft.date=2013-07-18&rft.volume=499&rft.issue=7458&rft.spage=295&rft.epage=300&rft.pages=295-300&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature12354&rft_dat=%3Cgale_proqu%3EA337370689%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419402424&rft_id=info:pmid/23868258&rft_galeid=A337370689&rfr_iscdi=true