EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface

Many cancers are dependent on inappropriate activation of epidermal growth factor receptor (EGFR), and drugs targeting this receptor can improve patient survival, although benefits are generally short-lived. We reveal a novel mechanism linking EGFR and the membrane-spanning, cancer-promoting protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2015-03, Vol.34 (11), p.1375-1383
Hauptverfasser: Adams, M N, Harrington, B S, He, Y, Davies, C M, Wallace, S J, Chetty, N P, Crandon, A J, Oliveira, N B, Shannon, C M, Coward, J I, Lumley, J W, Perrin, L C, Armes, J E, Hooper, J D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1383
container_issue 11
container_start_page 1375
container_title Oncogene
container_volume 34
creator Adams, M N
Harrington, B S
He, Y
Davies, C M
Wallace, S J
Chetty, N P
Crandon, A J
Oliveira, N B
Shannon, C M
Coward, J I
Lumley, J W
Perrin, L C
Armes, J E
Hooper, J D
description Many cancers are dependent on inappropriate activation of epidermal growth factor receptor (EGFR), and drugs targeting this receptor can improve patient survival, although benefits are generally short-lived. We reveal a novel mechanism linking EGFR and the membrane-spanning, cancer-promoting protein CDCP1 (CUB domain-containing protein 1). Under basal conditions, cell surface CDCP1 constitutively internalizes and undergoes palmitoylation-dependent degradation by a mechanism in which it is palmitoylated in at least one of its four cytoplasmic cysteines. This mechanism is functional in vivo as CDCP1 is elevated and palmitoylated in high-grade serous ovarian tumors. Interestingly, activation of the EGFR system with EGF inhibits proteasome-mediated, palmitoylation-dependent degradation of CDCP1, promoting recycling of CDCP1 to the cell surface where it is available to mediate its procancer effects. We also show that mechanisms inducing relocalization of CDCP1 to the cell surface, including disruption of its palmitoylation and EGF treatment, promote cell migration. Our data provide the first evidence that the EGFR system can function to increase the lifespan of a protein and also promote its recycling to the cell surface. This information may be useful for understanding mechanisms of resistance to EGFR therapies and assist in the design of treatments for EGFR-dependent cancers.
doi_str_mv 10.1038/onc.2014.88
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1668271214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A406163899</galeid><sourcerecordid>A406163899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-54650cb78610c23dbcb7fc4d7fdffe19bab8c30167c099dd9028e0e413a8c9393</originalsourceid><addsrcrecordid>eNqNks1vFCEUwCdGY9fqybsh8WJSZ4VhhoFjs7bVpIke9EwYeLOlmYEVmCbrH-TfWXDrZxpjOADv_d73q6rnBK8JpvyNd3rdYNKuOX9QrUjbs7rrRPuwWmHR4Vo0tDmqnsR4jTHuBW4eV0dNyzgRbb-qvp1dnCPrruxgU0Tau5hsWpK9gSxNEJya7FeVrHdIOYN2appt8vvpu6g2sANnwCVkYBuUOYB-RDPMQ1AO6rhTzlm3RbvgtXIaAtq83Xwk5T_7VDQlsLpRdlKDnWzao-wiXQHSME0oLmFUGp5Wj0Y1RXh2dx9Xn8_PPm3e1ZcfLt5vTi9rzbou1V3LOqyHnjOCdUPNkN-jbk0_mnEEIgY1cE0xYb3GQhiTu8EBQ0uo4lpQQY-rVwe_Ob0vC8QkZxtLIrkWv0RJGONNTxrS_g9KWccpZRl9-Rd67ZfS2igbSgkjHOcp_YPKvvLICMX8F7VVE0jrRp-C0iW0PG0xI4xyUepY30PlY2C2ecow2iz_w-DkYKCDjzHAKHfBzirsJcGyrJnMaybLmkleknhxl-oyzGB-sj_2KgOvD0DMKreF8Fst9_i7BRnY3Uc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662461308</pqid></control><display><type>article</type><title>EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface</title><source>MEDLINE</source><source>Nature</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Adams, M N ; Harrington, B S ; He, Y ; Davies, C M ; Wallace, S J ; Chetty, N P ; Crandon, A J ; Oliveira, N B ; Shannon, C M ; Coward, J I ; Lumley, J W ; Perrin, L C ; Armes, J E ; Hooper, J D</creator><creatorcontrib>Adams, M N ; Harrington, B S ; He, Y ; Davies, C M ; Wallace, S J ; Chetty, N P ; Crandon, A J ; Oliveira, N B ; Shannon, C M ; Coward, J I ; Lumley, J W ; Perrin, L C ; Armes, J E ; Hooper, J D</creatorcontrib><description>Many cancers are dependent on inappropriate activation of epidermal growth factor receptor (EGFR), and drugs targeting this receptor can improve patient survival, although benefits are generally short-lived. We reveal a novel mechanism linking EGFR and the membrane-spanning, cancer-promoting protein CDCP1 (CUB domain-containing protein 1). Under basal conditions, cell surface CDCP1 constitutively internalizes and undergoes palmitoylation-dependent degradation by a mechanism in which it is palmitoylated in at least one of its four cytoplasmic cysteines. This mechanism is functional in vivo as CDCP1 is elevated and palmitoylated in high-grade serous ovarian tumors. Interestingly, activation of the EGFR system with EGF inhibits proteasome-mediated, palmitoylation-dependent degradation of CDCP1, promoting recycling of CDCP1 to the cell surface where it is available to mediate its procancer effects. We also show that mechanisms inducing relocalization of CDCP1 to the cell surface, including disruption of its palmitoylation and EGF treatment, promote cell migration. Our data provide the first evidence that the EGFR system can function to increase the lifespan of a protein and also promote its recycling to the cell surface. This information may be useful for understanding mechanisms of resistance to EGFR therapies and assist in the design of treatments for EGFR-dependent cancers.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2014.88</identifier><identifier>PMID: 24681947</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 13/109 ; 13/95 ; 38/70 ; 631/80/313/1461 ; Animals ; Antibodies, Monoclonal - immunology ; Antigens, CD - immunology ; Antigens, CD - metabolism ; Apoptosis ; Cancer ; Care and treatment ; Cell adhesion &amp; migration ; Cell Adhesion Molecules - antagonists &amp; inhibitors ; Cell Adhesion Molecules - immunology ; Cell Adhesion Molecules - metabolism ; Cell Biology ; Cell cycle ; Cell Line, Tumor ; Cell Membrane - metabolism ; Cell migration ; Cell Movement ; Cell surface ; Drug delivery ; Enzyme Activation ; Epidermal growth factor ; Epidermal Growth Factor - pharmacology ; Epidermal growth factor receptors ; ErbB Receptors - metabolism ; Female ; Genetic aspects ; Human Genetics ; Humans ; Interleukin-6 - pharmacology ; Internal Medicine ; Internalization ; Life span ; Lipoylation ; Medicine ; Medicine &amp; Public Health ; Membrane proteins ; Membrane Proteins - metabolism ; Membranes ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Neoplasm Proteins - antagonists &amp; inhibitors ; Neoplasm Proteins - immunology ; Neoplasm Proteins - metabolism ; Neoplasm Transplantation ; Oncology ; original-article ; Ovarian cancer ; Ovarian Neoplasms - pathology ; Ovarian tumors ; Palmitoylation ; Proteasomes ; Protein Transport ; Proteins ; Risk factors ; Sodium ; Transplantation, Heterologous ; Tumor Necrosis Factor-alpha - pharmacology ; Tumors</subject><ispartof>Oncogene, 2015-03, Vol.34 (11), p.1375-1383</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 12, 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-54650cb78610c23dbcb7fc4d7fdffe19bab8c30167c099dd9028e0e413a8c9393</citedby><cites>FETCH-LOGICAL-c655t-54650cb78610c23dbcb7fc4d7fdffe19bab8c30167c099dd9028e0e413a8c9393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2014.88$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2014.88$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24681947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adams, M N</creatorcontrib><creatorcontrib>Harrington, B S</creatorcontrib><creatorcontrib>He, Y</creatorcontrib><creatorcontrib>Davies, C M</creatorcontrib><creatorcontrib>Wallace, S J</creatorcontrib><creatorcontrib>Chetty, N P</creatorcontrib><creatorcontrib>Crandon, A J</creatorcontrib><creatorcontrib>Oliveira, N B</creatorcontrib><creatorcontrib>Shannon, C M</creatorcontrib><creatorcontrib>Coward, J I</creatorcontrib><creatorcontrib>Lumley, J W</creatorcontrib><creatorcontrib>Perrin, L C</creatorcontrib><creatorcontrib>Armes, J E</creatorcontrib><creatorcontrib>Hooper, J D</creatorcontrib><title>EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Many cancers are dependent on inappropriate activation of epidermal growth factor receptor (EGFR), and drugs targeting this receptor can improve patient survival, although benefits are generally short-lived. We reveal a novel mechanism linking EGFR and the membrane-spanning, cancer-promoting protein CDCP1 (CUB domain-containing protein 1). Under basal conditions, cell surface CDCP1 constitutively internalizes and undergoes palmitoylation-dependent degradation by a mechanism in which it is palmitoylated in at least one of its four cytoplasmic cysteines. This mechanism is functional in vivo as CDCP1 is elevated and palmitoylated in high-grade serous ovarian tumors. Interestingly, activation of the EGFR system with EGF inhibits proteasome-mediated, palmitoylation-dependent degradation of CDCP1, promoting recycling of CDCP1 to the cell surface where it is available to mediate its procancer effects. We also show that mechanisms inducing relocalization of CDCP1 to the cell surface, including disruption of its palmitoylation and EGF treatment, promote cell migration. Our data provide the first evidence that the EGFR system can function to increase the lifespan of a protein and also promote its recycling to the cell surface. This information may be useful for understanding mechanisms of resistance to EGFR therapies and assist in the design of treatments for EGFR-dependent cancers.</description><subject>13</subject><subject>13/106</subject><subject>13/109</subject><subject>13/95</subject><subject>38/70</subject><subject>631/80/313/1461</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antigens, CD - immunology</subject><subject>Antigens, CD - metabolism</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion Molecules - antagonists &amp; inhibitors</subject><subject>Cell Adhesion Molecules - immunology</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - metabolism</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Cell surface</subject><subject>Drug delivery</subject><subject>Enzyme Activation</subject><subject>Epidermal growth factor</subject><subject>Epidermal Growth Factor - pharmacology</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB Receptors - metabolism</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Interleukin-6 - pharmacology</subject><subject>Internal Medicine</subject><subject>Internalization</subject><subject>Life span</subject><subject>Lipoylation</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Neoplasm Proteins - antagonists &amp; inhibitors</subject><subject>Neoplasm Proteins - immunology</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasm Transplantation</subject><subject>Oncology</subject><subject>original-article</subject><subject>Ovarian cancer</subject><subject>Ovarian Neoplasms - pathology</subject><subject>Ovarian tumors</subject><subject>Palmitoylation</subject><subject>Proteasomes</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>Sodium</subject><subject>Transplantation, Heterologous</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks1vFCEUwCdGY9fqybsh8WJSZ4VhhoFjs7bVpIke9EwYeLOlmYEVmCbrH-TfWXDrZxpjOADv_d73q6rnBK8JpvyNd3rdYNKuOX9QrUjbs7rrRPuwWmHR4Vo0tDmqnsR4jTHuBW4eV0dNyzgRbb-qvp1dnCPrruxgU0Tau5hsWpK9gSxNEJya7FeVrHdIOYN2appt8vvpu6g2sANnwCVkYBuUOYB-RDPMQ1AO6rhTzlm3RbvgtXIaAtq83Xwk5T_7VDQlsLpRdlKDnWzao-wiXQHSME0oLmFUGp5Wj0Y1RXh2dx9Xn8_PPm3e1ZcfLt5vTi9rzbou1V3LOqyHnjOCdUPNkN-jbk0_mnEEIgY1cE0xYb3GQhiTu8EBQ0uo4lpQQY-rVwe_Ob0vC8QkZxtLIrkWv0RJGONNTxrS_g9KWccpZRl9-Rd67ZfS2igbSgkjHOcp_YPKvvLICMX8F7VVE0jrRp-C0iW0PG0xI4xyUepY30PlY2C2ecow2iz_w-DkYKCDjzHAKHfBzirsJcGyrJnMaybLmkleknhxl-oyzGB-sj_2KgOvD0DMKreF8Fst9_i7BRnY3Uc</recordid><startdate>20150312</startdate><enddate>20150312</enddate><creator>Adams, M N</creator><creator>Harrington, B S</creator><creator>He, Y</creator><creator>Davies, C M</creator><creator>Wallace, S J</creator><creator>Chetty, N P</creator><creator>Crandon, A J</creator><creator>Oliveira, N B</creator><creator>Shannon, C M</creator><creator>Coward, J I</creator><creator>Lumley, J W</creator><creator>Perrin, L C</creator><creator>Armes, J E</creator><creator>Hooper, J D</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150312</creationdate><title>EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface</title><author>Adams, M N ; Harrington, B S ; He, Y ; Davies, C M ; Wallace, S J ; Chetty, N P ; Crandon, A J ; Oliveira, N B ; Shannon, C M ; Coward, J I ; Lumley, J W ; Perrin, L C ; Armes, J E ; Hooper, J D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-54650cb78610c23dbcb7fc4d7fdffe19bab8c30167c099dd9028e0e413a8c9393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13</topic><topic>13/106</topic><topic>13/109</topic><topic>13/95</topic><topic>38/70</topic><topic>631/80/313/1461</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antigens, CD - immunology</topic><topic>Antigens, CD - metabolism</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion Molecules - antagonists &amp; inhibitors</topic><topic>Cell Adhesion Molecules - immunology</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - metabolism</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Cell surface</topic><topic>Drug delivery</topic><topic>Enzyme Activation</topic><topic>Epidermal growth factor</topic><topic>Epidermal Growth Factor - pharmacology</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB Receptors - metabolism</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Interleukin-6 - pharmacology</topic><topic>Internal Medicine</topic><topic>Internalization</topic><topic>Life span</topic><topic>Lipoylation</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Neoplasm Proteins - antagonists &amp; inhibitors</topic><topic>Neoplasm Proteins - immunology</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasm Transplantation</topic><topic>Oncology</topic><topic>original-article</topic><topic>Ovarian cancer</topic><topic>Ovarian Neoplasms - pathology</topic><topic>Ovarian tumors</topic><topic>Palmitoylation</topic><topic>Proteasomes</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>Sodium</topic><topic>Transplantation, Heterologous</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, M N</creatorcontrib><creatorcontrib>Harrington, B S</creatorcontrib><creatorcontrib>He, Y</creatorcontrib><creatorcontrib>Davies, C M</creatorcontrib><creatorcontrib>Wallace, S J</creatorcontrib><creatorcontrib>Chetty, N P</creatorcontrib><creatorcontrib>Crandon, A J</creatorcontrib><creatorcontrib>Oliveira, N B</creatorcontrib><creatorcontrib>Shannon, C M</creatorcontrib><creatorcontrib>Coward, J I</creatorcontrib><creatorcontrib>Lumley, J W</creatorcontrib><creatorcontrib>Perrin, L C</creatorcontrib><creatorcontrib>Armes, J E</creatorcontrib><creatorcontrib>Hooper, J D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, M N</au><au>Harrington, B S</au><au>He, Y</au><au>Davies, C M</au><au>Wallace, S J</au><au>Chetty, N P</au><au>Crandon, A J</au><au>Oliveira, N B</au><au>Shannon, C M</au><au>Coward, J I</au><au>Lumley, J W</au><au>Perrin, L C</au><au>Armes, J E</au><au>Hooper, J D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2015-03-12</date><risdate>2015</risdate><volume>34</volume><issue>11</issue><spage>1375</spage><epage>1383</epage><pages>1375-1383</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Many cancers are dependent on inappropriate activation of epidermal growth factor receptor (EGFR), and drugs targeting this receptor can improve patient survival, although benefits are generally short-lived. We reveal a novel mechanism linking EGFR and the membrane-spanning, cancer-promoting protein CDCP1 (CUB domain-containing protein 1). Under basal conditions, cell surface CDCP1 constitutively internalizes and undergoes palmitoylation-dependent degradation by a mechanism in which it is palmitoylated in at least one of its four cytoplasmic cysteines. This mechanism is functional in vivo as CDCP1 is elevated and palmitoylated in high-grade serous ovarian tumors. Interestingly, activation of the EGFR system with EGF inhibits proteasome-mediated, palmitoylation-dependent degradation of CDCP1, promoting recycling of CDCP1 to the cell surface where it is available to mediate its procancer effects. We also show that mechanisms inducing relocalization of CDCP1 to the cell surface, including disruption of its palmitoylation and EGF treatment, promote cell migration. Our data provide the first evidence that the EGFR system can function to increase the lifespan of a protein and also promote its recycling to the cell surface. This information may be useful for understanding mechanisms of resistance to EGFR therapies and assist in the design of treatments for EGFR-dependent cancers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24681947</pmid><doi>10.1038/onc.2014.88</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2015-03, Vol.34 (11), p.1375-1383
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_1668271214
source MEDLINE; Nature; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects 13
13/106
13/109
13/95
38/70
631/80/313/1461
Animals
Antibodies, Monoclonal - immunology
Antigens, CD - immunology
Antigens, CD - metabolism
Apoptosis
Cancer
Care and treatment
Cell adhesion & migration
Cell Adhesion Molecules - antagonists & inhibitors
Cell Adhesion Molecules - immunology
Cell Adhesion Molecules - metabolism
Cell Biology
Cell cycle
Cell Line, Tumor
Cell Membrane - metabolism
Cell migration
Cell Movement
Cell surface
Drug delivery
Enzyme Activation
Epidermal growth factor
Epidermal Growth Factor - pharmacology
Epidermal growth factor receptors
ErbB Receptors - metabolism
Female
Genetic aspects
Human Genetics
Humans
Interleukin-6 - pharmacology
Internal Medicine
Internalization
Life span
Lipoylation
Medicine
Medicine & Public Health
Membrane proteins
Membrane Proteins - metabolism
Membranes
Mice
Mice, Inbred NOD
Mice, SCID
Neoplasm Proteins - antagonists & inhibitors
Neoplasm Proteins - immunology
Neoplasm Proteins - metabolism
Neoplasm Transplantation
Oncology
original-article
Ovarian cancer
Ovarian Neoplasms - pathology
Ovarian tumors
Palmitoylation
Proteasomes
Protein Transport
Proteins
Risk factors
Sodium
Transplantation, Heterologous
Tumor Necrosis Factor-alpha - pharmacology
Tumors
title EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EGF%20inhibits%20constitutive%20internalization%20and%20palmitoylation-dependent%20degradation%20of%20membrane-spanning%20procancer%20CDCP1%20promoting%20its%20availability%20on%20the%20cell%20surface&rft.jtitle=Oncogene&rft.au=Adams,%20M%20N&rft.date=2015-03-12&rft.volume=34&rft.issue=11&rft.spage=1375&rft.epage=1383&rft.pages=1375-1383&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2014.88&rft_dat=%3Cgale_proqu%3EA406163899%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662461308&rft_id=info:pmid/24681947&rft_galeid=A406163899&rfr_iscdi=true