Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil

A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO₂is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeochemistry 2015-03, Vol.123 (1-2), p.83-98
Hauptverfasser: Breecker, D. O, Bergel, S, Nadel, M, Tremblay, M. M, Osuna-Orozco, R, Larson, T. E, Sharp, Z. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1-2
container_start_page 83
container_title Biogeochemistry
container_volume 123
creator Breecker, D. O
Bergel, S
Nadel, M
Tremblay, M. M
Osuna-Orozco, R
Larson, T. E
Sharp, Z. D
description A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO₂is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between CO₂and SOM ([Formula: see text]) during soil respiration is the most widely accepted explanation for the down-profile increase in SOM δ¹³C values commonly observed in well-drained soils. In order to shed light on this apparent discrepancy, we incubated soil samples collected from the top 2 cm of soils with pure C₃vegetation and compared the δ¹³C values of soil-respired CO₂to the δ¹³C values of bulk SOM. Our results show near-zero [Formula: see text] values (−0.3 to 0.4 ‰), supporting the use of paleosol organic matter as a proxy for paleo soil-respired CO₂. Significantly more negative [Formula: see text] values are required to explain the typical δ¹³C profiles of SOM in well-drained soils. Therefore our results also suggest that typical SOM δ¹³C profiles result from either (1) a process other than carbon isotope fractionation between CO₂and SOM during soil respiration or (2) [Formula: see text] values that become increasingly negative as SOM matures.
doi_str_mv 10.1007/s10533-014-0054-3
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1668266202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24713177</jstor_id><sourcerecordid>24713177</sourcerecordid><originalsourceid>FETCH-LOGICAL-a488t-8c9e0db7fdafa0c1966e9759c81a4993781d86dc9c346dce9bd02c0ad24e7a313</originalsourceid><addsrcrecordid>eNp9kc-q1TAQxosoeLz6AC7EgBs31UnSJulSLtc_cMWFXnAXpsn0kGNPUpMWvS_hM9tSFXHhZmYxv--bYb6qeszhBQfQLwuHVsoaeFMDtE0t71QH3mpZt7z9fLc6AFemFq2S96sHpZwAoNMgD9WP9yGmzMqM_UjMYe5TZKGkOU3EhoxuDiniVlhP8zeiyDKVKWTyv2kf0vfgiWH0rF_GL6ykMLKUjxiDY2ecZ8rMLznEIxuxTxnnlG9ZiG7pd-c0sHXfJntY3RtwLPToV7-obl5ffbp8W19_ePPu8tV1jY0xc21cR-B7PXgcEBzvlKJOt50zHJuuk9pwb5R3nZPN2qjrPQgH6EVDGiWXF9Xz3XfK6etCZbbnUByNI0ZKS7FcKSOUEiBW9Nk_6CktOa7XbRRIrkCZleI75XIqJdNgpxzOmG8tB7slZPeE7JqQ3RKyctWIXVOm7TmU_3L-j-jJLjqV9Y1_tohGc8m1XudP9_mAyeIxh2JvPgrgLYCAxgiQPwGsgKmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660316068</pqid></control><display><type>article</type><title>Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil</title><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Breecker, D. O ; Bergel, S ; Nadel, M ; Tremblay, M. M ; Osuna-Orozco, R ; Larson, T. E ; Sharp, Z. D</creator><creatorcontrib>Breecker, D. O ; Bergel, S ; Nadel, M ; Tremblay, M. M ; Osuna-Orozco, R ; Larson, T. E ; Sharp, Z. D</creatorcontrib><description>A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO₂is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between CO₂and SOM ([Formula: see text]) during soil respiration is the most widely accepted explanation for the down-profile increase in SOM δ¹³C values commonly observed in well-drained soils. In order to shed light on this apparent discrepancy, we incubated soil samples collected from the top 2 cm of soils with pure C₃vegetation and compared the δ¹³C values of soil-respired CO₂to the δ¹³C values of bulk SOM. Our results show near-zero [Formula: see text] values (−0.3 to 0.4 ‰), supporting the use of paleosol organic matter as a proxy for paleo soil-respired CO₂. Significantly more negative [Formula: see text] values are required to explain the typical δ¹³C profiles of SOM in well-drained soils. Therefore our results also suggest that typical SOM δ¹³C profiles result from either (1) a process other than carbon isotope fractionation between CO₂and SOM during soil respiration or (2) [Formula: see text] values that become increasingly negative as SOM matures.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-014-0054-3</identifier><language>eng</language><publisher>Cham: Springer-Verlag</publisher><subject>biogeochemistry ; Biogeosciences ; Carbon ; Carbon dioxide ; Carbon isotopes ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environmental Chemistry ; Fractionation ; Isotope fractionation ; Isotopes ; Isotopic enrichment ; Life Sciences ; Organic matter ; paleosolic soil types ; Paleosols ; Respiration ; Soil organic matter ; soil respiration ; soil sampling ; Soils ; stable isotopes ; Topsoil</subject><ispartof>Biogeochemistry, 2015-03, Vol.123 (1-2), p.83-98</ispartof><rights>Springer International Publishing 2015</rights><rights>Springer International Publishing Switzerland 2014</rights><rights>Springer International Publishing Switzerland 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a488t-8c9e0db7fdafa0c1966e9759c81a4993781d86dc9c346dce9bd02c0ad24e7a313</citedby><cites>FETCH-LOGICAL-a488t-8c9e0db7fdafa0c1966e9759c81a4993781d86dc9c346dce9bd02c0ad24e7a313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24713177$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24713177$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids></links><search><creatorcontrib>Breecker, D. O</creatorcontrib><creatorcontrib>Bergel, S</creatorcontrib><creatorcontrib>Nadel, M</creatorcontrib><creatorcontrib>Tremblay, M. M</creatorcontrib><creatorcontrib>Osuna-Orozco, R</creatorcontrib><creatorcontrib>Larson, T. E</creatorcontrib><creatorcontrib>Sharp, Z. D</creatorcontrib><title>Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO₂is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between CO₂and SOM ([Formula: see text]) during soil respiration is the most widely accepted explanation for the down-profile increase in SOM δ¹³C values commonly observed in well-drained soils. In order to shed light on this apparent discrepancy, we incubated soil samples collected from the top 2 cm of soils with pure C₃vegetation and compared the δ¹³C values of soil-respired CO₂to the δ¹³C values of bulk SOM. Our results show near-zero [Formula: see text] values (−0.3 to 0.4 ‰), supporting the use of paleosol organic matter as a proxy for paleo soil-respired CO₂. Significantly more negative [Formula: see text] values are required to explain the typical δ¹³C profiles of SOM in well-drained soils. Therefore our results also suggest that typical SOM δ¹³C profiles result from either (1) a process other than carbon isotope fractionation between CO₂and SOM during soil respiration or (2) [Formula: see text] values that become increasingly negative as SOM matures.</description><subject>biogeochemistry</subject><subject>Biogeosciences</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon isotopes</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Fractionation</subject><subject>Isotope fractionation</subject><subject>Isotopes</subject><subject>Isotopic enrichment</subject><subject>Life Sciences</subject><subject>Organic matter</subject><subject>paleosolic soil types</subject><subject>Paleosols</subject><subject>Respiration</subject><subject>Soil organic matter</subject><subject>soil respiration</subject><subject>soil sampling</subject><subject>Soils</subject><subject>stable isotopes</subject><subject>Topsoil</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc-q1TAQxosoeLz6AC7EgBs31UnSJulSLtc_cMWFXnAXpsn0kGNPUpMWvS_hM9tSFXHhZmYxv--bYb6qeszhBQfQLwuHVsoaeFMDtE0t71QH3mpZt7z9fLc6AFemFq2S96sHpZwAoNMgD9WP9yGmzMqM_UjMYe5TZKGkOU3EhoxuDiniVlhP8zeiyDKVKWTyv2kf0vfgiWH0rF_GL6ykMLKUjxiDY2ecZ8rMLznEIxuxTxnnlG9ZiG7pd-c0sHXfJntY3RtwLPToV7-obl5ffbp8W19_ePPu8tV1jY0xc21cR-B7PXgcEBzvlKJOt50zHJuuk9pwb5R3nZPN2qjrPQgH6EVDGiWXF9Xz3XfK6etCZbbnUByNI0ZKS7FcKSOUEiBW9Nk_6CktOa7XbRRIrkCZleI75XIqJdNgpxzOmG8tB7slZPeE7JqQ3RKyctWIXVOm7TmU_3L-j-jJLjqV9Y1_tohGc8m1XudP9_mAyeIxh2JvPgrgLYCAxgiQPwGsgKmU</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Breecker, D. O</creator><creator>Bergel, S</creator><creator>Nadel, M</creator><creator>Tremblay, M. M</creator><creator>Osuna-Orozco, R</creator><creator>Larson, T. E</creator><creator>Sharp, Z. D</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20150301</creationdate><title>Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil</title><author>Breecker, D. O ; Bergel, S ; Nadel, M ; Tremblay, M. M ; Osuna-Orozco, R ; Larson, T. E ; Sharp, Z. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a488t-8c9e0db7fdafa0c1966e9759c81a4993781d86dc9c346dce9bd02c0ad24e7a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>biogeochemistry</topic><topic>Biogeosciences</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon isotopes</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Fractionation</topic><topic>Isotope fractionation</topic><topic>Isotopes</topic><topic>Isotopic enrichment</topic><topic>Life Sciences</topic><topic>Organic matter</topic><topic>paleosolic soil types</topic><topic>Paleosols</topic><topic>Respiration</topic><topic>Soil organic matter</topic><topic>soil respiration</topic><topic>soil sampling</topic><topic>Soils</topic><topic>stable isotopes</topic><topic>Topsoil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breecker, D. O</creatorcontrib><creatorcontrib>Bergel, S</creatorcontrib><creatorcontrib>Nadel, M</creatorcontrib><creatorcontrib>Tremblay, M. M</creatorcontrib><creatorcontrib>Osuna-Orozco, R</creatorcontrib><creatorcontrib>Larson, T. E</creatorcontrib><creatorcontrib>Sharp, Z. D</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breecker, D. O</au><au>Bergel, S</au><au>Nadel, M</au><au>Tremblay, M. M</au><au>Osuna-Orozco, R</au><au>Larson, T. E</au><au>Sharp, Z. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>123</volume><issue>1-2</issue><spage>83</spage><epage>98</epage><pages>83-98</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO₂is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between CO₂and SOM ([Formula: see text]) during soil respiration is the most widely accepted explanation for the down-profile increase in SOM δ¹³C values commonly observed in well-drained soils. In order to shed light on this apparent discrepancy, we incubated soil samples collected from the top 2 cm of soils with pure C₃vegetation and compared the δ¹³C values of soil-respired CO₂to the δ¹³C values of bulk SOM. Our results show near-zero [Formula: see text] values (−0.3 to 0.4 ‰), supporting the use of paleosol organic matter as a proxy for paleo soil-respired CO₂. Significantly more negative [Formula: see text] values are required to explain the typical δ¹³C profiles of SOM in well-drained soils. Therefore our results also suggest that typical SOM δ¹³C profiles result from either (1) a process other than carbon isotope fractionation between CO₂and SOM during soil respiration or (2) [Formula: see text] values that become increasingly negative as SOM matures.</abstract><cop>Cham</cop><pub>Springer-Verlag</pub><doi>10.1007/s10533-014-0054-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-2563
ispartof Biogeochemistry, 2015-03, Vol.123 (1-2), p.83-98
issn 0168-2563
1573-515X
language eng
recordid cdi_proquest_miscellaneous_1668266202
source Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects biogeochemistry
Biogeosciences
Carbon
Carbon dioxide
Carbon isotopes
Earth and Environmental Science
Earth Sciences
Ecosystems
Environmental Chemistry
Fractionation
Isotope fractionation
Isotopes
Isotopic enrichment
Life Sciences
Organic matter
paleosolic soil types
Paleosols
Respiration
Soil organic matter
soil respiration
soil sampling
Soils
stable isotopes
Topsoil
title Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minor%20stable%20carbon%20isotope%20fractionation%20between%20respired%20carbon%20dioxide%20and%20bulk%20soil%20organic%20matter%20during%20laboratory%20incubation%20of%20topsoil&rft.jtitle=Biogeochemistry&rft.au=Breecker,%20D.%20O&rft.date=2015-03-01&rft.volume=123&rft.issue=1-2&rft.spage=83&rft.epage=98&rft.pages=83-98&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-014-0054-3&rft_dat=%3Cjstor_proqu%3E24713177%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660316068&rft_id=info:pmid/&rft_jstor_id=24713177&rfr_iscdi=true