Flexible, Scalable, and Efficient Targeted Resequencing on a Benchtop Sequencer for Variant Detection in Clinical Practice

ABSTRACT The release of benchtop next‐generation sequencing (NGS) instruments has paved the way to implement the technology in clinical setting. The need for flexible, qualitative, and cost‐efficient workflows is high. We used singleplex‐PCR for highly efficient target enrichment, allowing us to rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 2015-03, Vol.36 (3), p.379-387
Hauptverfasser: De Leeneer, Kim, Hellemans, Jan, Steyaert, Wouter, Lefever, Steve, Vereecke, Inge, Debals, Eveline, Crombez, Brecht, Baetens, Machteld, Van Heetvelde, Mattias, Coppieters, Frauke, Vandesompele, Jo, De Jaegher, Annelies, De Baere, Elfride, Coucke, Paul, Claes, Kathleen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 3
container_start_page 379
container_title Human mutation
container_volume 36
creator De Leeneer, Kim
Hellemans, Jan
Steyaert, Wouter
Lefever, Steve
Vereecke, Inge
Debals, Eveline
Crombez, Brecht
Baetens, Machteld
Van Heetvelde, Mattias
Coppieters, Frauke
Vandesompele, Jo
De Jaegher, Annelies
De Baere, Elfride
Coucke, Paul
Claes, Kathleen
description ABSTRACT The release of benchtop next‐generation sequencing (NGS) instruments has paved the way to implement the technology in clinical setting. The need for flexible, qualitative, and cost‐efficient workflows is high. We used singleplex‐PCR for highly efficient target enrichment, allowing us to reach the quality standards set in Sanger sequencing‐based diagnostics. For the library preparation, a modified NexteraXT protocol was used, followed by sequencing on a MiSeq instrument. With an innovative pooling strategy, high flexibility, scalability, and cost‐efficiency were obtained, independent of the availability of commercial kits. The approach was validated for ∼250 genes associated with monogenic disorders. An overall sensitivity (>99%) similar to Sanger sequencing was observed in combination with a positive predictive value of >98%. The distribution of coverage was highly uniform, guaranteeing a minimal number of gaps to be filled with alternative methods. ISO15189‐accreditation was obtained for the workflow. A major asset of the singleplex PCR‐based enrichment is that new targets can be easily implemented. Diagnostic laboratories have validated assays available ensuring that the proposed workflow can easily be adopted. Although our platform was optimized for constitutional variant detection of monogenic disease genes, it is now also used as a model for somatic mutation detection in acquired diseases.
doi_str_mv 10.1002/humu.22739
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1668262425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1668262425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4649-2c26f729224e0b9dc880246795bd7d583270218d7b5770fb7d5dcbf4846e34673</originalsourceid><addsrcrecordid>eNqNkU9T1TAUxTOOjiC48QM4mXHjOBbTNP-61Cfv4QgPRni4zKTpLQT60mfSjuCnN6XAwoXDKjc3v3NukoPQm5zs5YTQT5fDetijVBblM7Sdk1Jlqc2ejzUvMylLtoVexXhFCFGcFy_RFuWcMJGrbfRn3sKNq1r4iE-tac1dZXyN95vGWQe-x2cmXEAPNf4BEX4N4K3zF7jz2OAvaXPZdxt8Oh1AwE0X8LkJziTl1ySzvUuo83jWOu_SCHwSTGpa2EUvGtNGeH2_7qDVfP9sdpAdHi--zT4fZpYJVmbUUtFIWlLKgFRlbZUilAlZ8qqWNVcFlYTmqpYVl5I0VerVtmqYYgKKxBU76P3kuwldumXs9dpFC21rPHRD1LkQigrKKH8KyihhVIzou3_Qq24IPj1kpFIYXIgiUR8myoYuxgCN3gS3NuFW50SP4ekxPH0XXoLf3lsO1RrqR_QhrQTkE_DbtXD7Hyt9sDpaPZhmk8bFHm4eNSZc6_Q3kuufy4X-frRcKrE41_PiL8hmsgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662735663</pqid></control><display><type>article</type><title>Flexible, Scalable, and Efficient Targeted Resequencing on a Benchtop Sequencer for Variant Detection in Clinical Practice</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>De Leeneer, Kim ; Hellemans, Jan ; Steyaert, Wouter ; Lefever, Steve ; Vereecke, Inge ; Debals, Eveline ; Crombez, Brecht ; Baetens, Machteld ; Van Heetvelde, Mattias ; Coppieters, Frauke ; Vandesompele, Jo ; De Jaegher, Annelies ; De Baere, Elfride ; Coucke, Paul ; Claes, Kathleen</creator><creatorcontrib>De Leeneer, Kim ; Hellemans, Jan ; Steyaert, Wouter ; Lefever, Steve ; Vereecke, Inge ; Debals, Eveline ; Crombez, Brecht ; Baetens, Machteld ; Van Heetvelde, Mattias ; Coppieters, Frauke ; Vandesompele, Jo ; De Jaegher, Annelies ; De Baere, Elfride ; Coucke, Paul ; Claes, Kathleen</creatorcontrib><description>ABSTRACT The release of benchtop next‐generation sequencing (NGS) instruments has paved the way to implement the technology in clinical setting. The need for flexible, qualitative, and cost‐efficient workflows is high. We used singleplex‐PCR for highly efficient target enrichment, allowing us to reach the quality standards set in Sanger sequencing‐based diagnostics. For the library preparation, a modified NexteraXT protocol was used, followed by sequencing on a MiSeq instrument. With an innovative pooling strategy, high flexibility, scalability, and cost‐efficiency were obtained, independent of the availability of commercial kits. The approach was validated for ∼250 genes associated with monogenic disorders. An overall sensitivity (&gt;99%) similar to Sanger sequencing was observed in combination with a positive predictive value of &gt;98%. The distribution of coverage was highly uniform, guaranteeing a minimal number of gaps to be filled with alternative methods. ISO15189‐accreditation was obtained for the workflow. A major asset of the singleplex PCR‐based enrichment is that new targets can be easily implemented. Diagnostic laboratories have validated assays available ensuring that the proposed workflow can easily be adopted. Although our platform was optimized for constitutional variant detection of monogenic disease genes, it is now also used as a model for somatic mutation detection in acquired diseases.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.22739</identifier><identifier>PMID: 25504618</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>clinical implementation ; Clinical medicine ; Genetic Diseases, Inborn - diagnosis ; Genetic disorders ; Genomics ; High-Throughput Nucleotide Sequencing - methods ; Humans ; ISO15189 accreditation ; Mutation ; NGS ; Polymerase Chain Reaction - methods ; Prognosis ; Sensitivity and Specificity ; Sequence Analysis, DNA - methods ; targeted resequencing ; uniform target enrichment</subject><ispartof>Human mutation, 2015-03, Vol.36 (3), p.379-387</ispartof><rights>2014 WILEY PERIODICALS, INC.</rights><rights>Copyright © 2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4649-2c26f729224e0b9dc880246795bd7d583270218d7b5770fb7d5dcbf4846e34673</citedby><cites>FETCH-LOGICAL-c4649-2c26f729224e0b9dc880246795bd7d583270218d7b5770fb7d5dcbf4846e34673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.22739$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.22739$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25504618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Leeneer, Kim</creatorcontrib><creatorcontrib>Hellemans, Jan</creatorcontrib><creatorcontrib>Steyaert, Wouter</creatorcontrib><creatorcontrib>Lefever, Steve</creatorcontrib><creatorcontrib>Vereecke, Inge</creatorcontrib><creatorcontrib>Debals, Eveline</creatorcontrib><creatorcontrib>Crombez, Brecht</creatorcontrib><creatorcontrib>Baetens, Machteld</creatorcontrib><creatorcontrib>Van Heetvelde, Mattias</creatorcontrib><creatorcontrib>Coppieters, Frauke</creatorcontrib><creatorcontrib>Vandesompele, Jo</creatorcontrib><creatorcontrib>De Jaegher, Annelies</creatorcontrib><creatorcontrib>De Baere, Elfride</creatorcontrib><creatorcontrib>Coucke, Paul</creatorcontrib><creatorcontrib>Claes, Kathleen</creatorcontrib><title>Flexible, Scalable, and Efficient Targeted Resequencing on a Benchtop Sequencer for Variant Detection in Clinical Practice</title><title>Human mutation</title><addtitle>Human Mutation</addtitle><description>ABSTRACT The release of benchtop next‐generation sequencing (NGS) instruments has paved the way to implement the technology in clinical setting. The need for flexible, qualitative, and cost‐efficient workflows is high. We used singleplex‐PCR for highly efficient target enrichment, allowing us to reach the quality standards set in Sanger sequencing‐based diagnostics. For the library preparation, a modified NexteraXT protocol was used, followed by sequencing on a MiSeq instrument. With an innovative pooling strategy, high flexibility, scalability, and cost‐efficiency were obtained, independent of the availability of commercial kits. The approach was validated for ∼250 genes associated with monogenic disorders. An overall sensitivity (&gt;99%) similar to Sanger sequencing was observed in combination with a positive predictive value of &gt;98%. The distribution of coverage was highly uniform, guaranteeing a minimal number of gaps to be filled with alternative methods. ISO15189‐accreditation was obtained for the workflow. A major asset of the singleplex PCR‐based enrichment is that new targets can be easily implemented. Diagnostic laboratories have validated assays available ensuring that the proposed workflow can easily be adopted. Although our platform was optimized for constitutional variant detection of monogenic disease genes, it is now also used as a model for somatic mutation detection in acquired diseases.</description><subject>clinical implementation</subject><subject>Clinical medicine</subject><subject>Genetic Diseases, Inborn - diagnosis</subject><subject>Genetic disorders</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>ISO15189 accreditation</subject><subject>Mutation</subject><subject>NGS</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Prognosis</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Analysis, DNA - methods</subject><subject>targeted resequencing</subject><subject>uniform target enrichment</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9T1TAUxTOOjiC48QM4mXHjOBbTNP-61Cfv4QgPRni4zKTpLQT60mfSjuCnN6XAwoXDKjc3v3NukoPQm5zs5YTQT5fDetijVBblM7Sdk1Jlqc2ejzUvMylLtoVexXhFCFGcFy_RFuWcMJGrbfRn3sKNq1r4iE-tac1dZXyN95vGWQe-x2cmXEAPNf4BEX4N4K3zF7jz2OAvaXPZdxt8Oh1AwE0X8LkJziTl1ySzvUuo83jWOu_SCHwSTGpa2EUvGtNGeH2_7qDVfP9sdpAdHi--zT4fZpYJVmbUUtFIWlLKgFRlbZUilAlZ8qqWNVcFlYTmqpYVl5I0VerVtmqYYgKKxBU76P3kuwldumXs9dpFC21rPHRD1LkQigrKKH8KyihhVIzou3_Qq24IPj1kpFIYXIgiUR8myoYuxgCN3gS3NuFW50SP4ekxPH0XXoLf3lsO1RrqR_QhrQTkE_DbtXD7Hyt9sDpaPZhmk8bFHm4eNSZc6_Q3kuufy4X-frRcKrE41_PiL8hmsgw</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>De Leeneer, Kim</creator><creator>Hellemans, Jan</creator><creator>Steyaert, Wouter</creator><creator>Lefever, Steve</creator><creator>Vereecke, Inge</creator><creator>Debals, Eveline</creator><creator>Crombez, Brecht</creator><creator>Baetens, Machteld</creator><creator>Van Heetvelde, Mattias</creator><creator>Coppieters, Frauke</creator><creator>Vandesompele, Jo</creator><creator>De Jaegher, Annelies</creator><creator>De Baere, Elfride</creator><creator>Coucke, Paul</creator><creator>Claes, Kathleen</creator><general>Blackwell Publishing Ltd</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201503</creationdate><title>Flexible, Scalable, and Efficient Targeted Resequencing on a Benchtop Sequencer for Variant Detection in Clinical Practice</title><author>De Leeneer, Kim ; Hellemans, Jan ; Steyaert, Wouter ; Lefever, Steve ; Vereecke, Inge ; Debals, Eveline ; Crombez, Brecht ; Baetens, Machteld ; Van Heetvelde, Mattias ; Coppieters, Frauke ; Vandesompele, Jo ; De Jaegher, Annelies ; De Baere, Elfride ; Coucke, Paul ; Claes, Kathleen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4649-2c26f729224e0b9dc880246795bd7d583270218d7b5770fb7d5dcbf4846e34673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>clinical implementation</topic><topic>Clinical medicine</topic><topic>Genetic Diseases, Inborn - diagnosis</topic><topic>Genetic disorders</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>ISO15189 accreditation</topic><topic>Mutation</topic><topic>NGS</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Prognosis</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Analysis, DNA - methods</topic><topic>targeted resequencing</topic><topic>uniform target enrichment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Leeneer, Kim</creatorcontrib><creatorcontrib>Hellemans, Jan</creatorcontrib><creatorcontrib>Steyaert, Wouter</creatorcontrib><creatorcontrib>Lefever, Steve</creatorcontrib><creatorcontrib>Vereecke, Inge</creatorcontrib><creatorcontrib>Debals, Eveline</creatorcontrib><creatorcontrib>Crombez, Brecht</creatorcontrib><creatorcontrib>Baetens, Machteld</creatorcontrib><creatorcontrib>Van Heetvelde, Mattias</creatorcontrib><creatorcontrib>Coppieters, Frauke</creatorcontrib><creatorcontrib>Vandesompele, Jo</creatorcontrib><creatorcontrib>De Jaegher, Annelies</creatorcontrib><creatorcontrib>De Baere, Elfride</creatorcontrib><creatorcontrib>Coucke, Paul</creatorcontrib><creatorcontrib>Claes, Kathleen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Leeneer, Kim</au><au>Hellemans, Jan</au><au>Steyaert, Wouter</au><au>Lefever, Steve</au><au>Vereecke, Inge</au><au>Debals, Eveline</au><au>Crombez, Brecht</au><au>Baetens, Machteld</au><au>Van Heetvelde, Mattias</au><au>Coppieters, Frauke</au><au>Vandesompele, Jo</au><au>De Jaegher, Annelies</au><au>De Baere, Elfride</au><au>Coucke, Paul</au><au>Claes, Kathleen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible, Scalable, and Efficient Targeted Resequencing on a Benchtop Sequencer for Variant Detection in Clinical Practice</atitle><jtitle>Human mutation</jtitle><addtitle>Human Mutation</addtitle><date>2015-03</date><risdate>2015</risdate><volume>36</volume><issue>3</issue><spage>379</spage><epage>387</epage><pages>379-387</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>ABSTRACT The release of benchtop next‐generation sequencing (NGS) instruments has paved the way to implement the technology in clinical setting. The need for flexible, qualitative, and cost‐efficient workflows is high. We used singleplex‐PCR for highly efficient target enrichment, allowing us to reach the quality standards set in Sanger sequencing‐based diagnostics. For the library preparation, a modified NexteraXT protocol was used, followed by sequencing on a MiSeq instrument. With an innovative pooling strategy, high flexibility, scalability, and cost‐efficiency were obtained, independent of the availability of commercial kits. The approach was validated for ∼250 genes associated with monogenic disorders. An overall sensitivity (&gt;99%) similar to Sanger sequencing was observed in combination with a positive predictive value of &gt;98%. The distribution of coverage was highly uniform, guaranteeing a minimal number of gaps to be filled with alternative methods. ISO15189‐accreditation was obtained for the workflow. A major asset of the singleplex PCR‐based enrichment is that new targets can be easily implemented. Diagnostic laboratories have validated assays available ensuring that the proposed workflow can easily be adopted. Although our platform was optimized for constitutional variant detection of monogenic disease genes, it is now also used as a model for somatic mutation detection in acquired diseases.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25504618</pmid><doi>10.1002/humu.22739</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof Human mutation, 2015-03, Vol.36 (3), p.379-387
issn 1059-7794
1098-1004
language eng
recordid cdi_proquest_miscellaneous_1668262425
source MEDLINE; Access via Wiley Online Library
subjects clinical implementation
Clinical medicine
Genetic Diseases, Inborn - diagnosis
Genetic disorders
Genomics
High-Throughput Nucleotide Sequencing - methods
Humans
ISO15189 accreditation
Mutation
NGS
Polymerase Chain Reaction - methods
Prognosis
Sensitivity and Specificity
Sequence Analysis, DNA - methods
targeted resequencing
uniform target enrichment
title Flexible, Scalable, and Efficient Targeted Resequencing on a Benchtop Sequencer for Variant Detection in Clinical Practice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible,%20Scalable,%20and%20Efficient%20Targeted%20Resequencing%20on%20a%20Benchtop%20Sequencer%20for%20Variant%20Detection%20in%20Clinical%20Practice&rft.jtitle=Human%20mutation&rft.au=De%20Leeneer,%20Kim&rft.date=2015-03&rft.volume=36&rft.issue=3&rft.spage=379&rft.epage=387&rft.pages=379-387&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.22739&rft_dat=%3Cproquest_cross%3E1668262425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662735663&rft_id=info:pmid/25504618&rfr_iscdi=true