Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length
The replication of nucleic acids is central to the origin of life. On the early Earth, suitable non-equilibrium boundary conditions would have been required to surmount the effects of thermodynamic equilibrium such as the dilution and degradation of oligonucleotides. One particularly intractable exp...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2015-03, Vol.7 (3), p.203-208 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 3 |
container_start_page | 203 |
container_title | Nature chemistry |
container_volume | 7 |
creator | Kreysing, Moritz Keil, Lorenz Lanzmich, Simon Braun, Dieter |
description | The replication of nucleic acids is central to the origin of life. On the early Earth, suitable non-equilibrium boundary conditions would have been required to surmount the effects of thermodynamic equilibrium such as the dilution and degradation of oligonucleotides. One particularly intractable experimental finding is that short genetic polymers replicate faster and outcompete longer ones, which leads to ever shorter sequences and the loss of genetic information. Here we show that a heat flux across an open pore in submerged rock concentrates replicating oligonucleotides from a constant feeding flow and selects for longer strands. Our experiments utilize the interplay of molecular thermophoresis and laminar convection, the latter driving strand separation and exponential replication. Strands of 75 nucleotides survive whereas strands half as long die out, which inverts the above dilemma of the survival of the shortest. The combined feeding, thermal cycling and positive length selection opens the door for a stable molecular evolution in the long-term microhabitat of heated porous rock.
How complex nucleic acids originally formed, despite dilution and degradation reactions, is not clear. Thermal gradients in rock pores have now been shown to be capable of trapping and thermo-cycling genetic polymers during replication. In this system long oligonucleotide strands are seen to outcompete short strands — a prerequisite for the evolution of replicating systems towards increasing complexity. |
doi_str_mv | 10.1038/nchem.2155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1668260806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1657317875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-ee9469607b537c0db13a4945cb057862d9aba6f1f5181e6d66272f0a93feca493</originalsourceid><addsrcrecordid>eNqN0c9rHCEUB3ApDc2P9tI_oAi9hIRNdRyfzrGENgkEcknOg-O82TW4OtUZ0kL_-Li7SSjNJScVP77H80vIZ87OOBP6W7ArXJ9VXMp35IArKRe1qJv3L3vB9slhzveMgRQcPpD9SkKjRaUPyN9LNBMd_PybGptiztQEGkcMdIwJKQbTecx0WiG1MUwuzHHONOHonTWTi6H4nmb0aLenONDo3TKG2XqMk-s3j-ODSX2mLtiEJruwpB7Dclp9JHuD8Rk_Pa1H5O7nj9vzy8X1zcXV-ffrha21mhaITQ0NMNVJoSzrOy5M3dTSdkwqDVXfmM7AwAfJNUfoASpVDcw0YkBbpDgix7u6Y4q_ZsxTu3bZovcmYBmn5QC6AqYZvIFKJbjSShb69T96H-cUyiAbBUJDDXVRJzu1_d2EQzsmtzbpT8tZu4mv3cbXbuIr-MtTyblbY_9Cn_Mq4HQHcrkKS0z_9Hxd7hF7aKZH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656386464</pqid></control><display><type>article</type><title>Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kreysing, Moritz ; Keil, Lorenz ; Lanzmich, Simon ; Braun, Dieter</creator><creatorcontrib>Kreysing, Moritz ; Keil, Lorenz ; Lanzmich, Simon ; Braun, Dieter</creatorcontrib><description>The replication of nucleic acids is central to the origin of life. On the early Earth, suitable non-equilibrium boundary conditions would have been required to surmount the effects of thermodynamic equilibrium such as the dilution and degradation of oligonucleotides. One particularly intractable experimental finding is that short genetic polymers replicate faster and outcompete longer ones, which leads to ever shorter sequences and the loss of genetic information. Here we show that a heat flux across an open pore in submerged rock concentrates replicating oligonucleotides from a constant feeding flow and selects for longer strands. Our experiments utilize the interplay of molecular thermophoresis and laminar convection, the latter driving strand separation and exponential replication. Strands of 75 nucleotides survive whereas strands half as long die out, which inverts the above dilemma of the survival of the shortest. The combined feeding, thermal cycling and positive length selection opens the door for a stable molecular evolution in the long-term microhabitat of heated porous rock.
How complex nucleic acids originally formed, despite dilution and degradation reactions, is not clear. Thermal gradients in rock pores have now been shown to be capable of trapping and thermo-cycling genetic polymers during replication. In this system long oligonucleotide strands are seen to outcompete short strands — a prerequisite for the evolution of replicating systems towards increasing complexity.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2155</identifier><identifier>PMID: 25698328</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/204/904 ; 639/638/440/950 ; 639/638/92/610 ; Analytical Chemistry ; Biochemistry ; Boundary conditions ; Chemistry ; Chemistry/Food Science ; Hot Temperature ; Inorganic Chemistry ; Microhabitats ; Nucleic acids ; Oligonucleotides - chemistry ; Organic Chemistry ; Physical Chemistry ; Polymers ; Rocks ; Thermodynamics</subject><ispartof>Nature chemistry, 2015-03, Vol.7 (3), p.203-208</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-ee9469607b537c0db13a4945cb057862d9aba6f1f5181e6d66272f0a93feca493</citedby><cites>FETCH-LOGICAL-c487t-ee9469607b537c0db13a4945cb057862d9aba6f1f5181e6d66272f0a93feca493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.2155$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.2155$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25698328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreysing, Moritz</creatorcontrib><creatorcontrib>Keil, Lorenz</creatorcontrib><creatorcontrib>Lanzmich, Simon</creatorcontrib><creatorcontrib>Braun, Dieter</creatorcontrib><title>Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>The replication of nucleic acids is central to the origin of life. On the early Earth, suitable non-equilibrium boundary conditions would have been required to surmount the effects of thermodynamic equilibrium such as the dilution and degradation of oligonucleotides. One particularly intractable experimental finding is that short genetic polymers replicate faster and outcompete longer ones, which leads to ever shorter sequences and the loss of genetic information. Here we show that a heat flux across an open pore in submerged rock concentrates replicating oligonucleotides from a constant feeding flow and selects for longer strands. Our experiments utilize the interplay of molecular thermophoresis and laminar convection, the latter driving strand separation and exponential replication. Strands of 75 nucleotides survive whereas strands half as long die out, which inverts the above dilemma of the survival of the shortest. The combined feeding, thermal cycling and positive length selection opens the door for a stable molecular evolution in the long-term microhabitat of heated porous rock.
How complex nucleic acids originally formed, despite dilution and degradation reactions, is not clear. Thermal gradients in rock pores have now been shown to be capable of trapping and thermo-cycling genetic polymers during replication. In this system long oligonucleotide strands are seen to outcompete short strands — a prerequisite for the evolution of replicating systems towards increasing complexity.</description><subject>639/638/204/904</subject><subject>639/638/440/950</subject><subject>639/638/92/610</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Boundary conditions</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Hot Temperature</subject><subject>Inorganic Chemistry</subject><subject>Microhabitats</subject><subject>Nucleic acids</subject><subject>Oligonucleotides - chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Polymers</subject><subject>Rocks</subject><subject>Thermodynamics</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0c9rHCEUB3ApDc2P9tI_oAi9hIRNdRyfzrGENgkEcknOg-O82TW4OtUZ0kL_-Li7SSjNJScVP77H80vIZ87OOBP6W7ArXJ9VXMp35IArKRe1qJv3L3vB9slhzveMgRQcPpD9SkKjRaUPyN9LNBMd_PybGptiztQEGkcMdIwJKQbTecx0WiG1MUwuzHHONOHonTWTi6H4nmb0aLenONDo3TKG2XqMk-s3j-ODSX2mLtiEJruwpB7Dclp9JHuD8Rk_Pa1H5O7nj9vzy8X1zcXV-ffrha21mhaITQ0NMNVJoSzrOy5M3dTSdkwqDVXfmM7AwAfJNUfoASpVDcw0YkBbpDgix7u6Y4q_ZsxTu3bZovcmYBmn5QC6AqYZvIFKJbjSShb69T96H-cUyiAbBUJDDXVRJzu1_d2EQzsmtzbpT8tZu4mv3cbXbuIr-MtTyblbY_9Cn_Mq4HQHcrkKS0z_9Hxd7hF7aKZH</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Kreysing, Moritz</creator><creator>Keil, Lorenz</creator><creator>Lanzmich, Simon</creator><creator>Braun, Dieter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20150301</creationdate><title>Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length</title><author>Kreysing, Moritz ; Keil, Lorenz ; Lanzmich, Simon ; Braun, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-ee9469607b537c0db13a4945cb057862d9aba6f1f5181e6d66272f0a93feca493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/638/204/904</topic><topic>639/638/440/950</topic><topic>639/638/92/610</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Boundary conditions</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Hot Temperature</topic><topic>Inorganic Chemistry</topic><topic>Microhabitats</topic><topic>Nucleic acids</topic><topic>Oligonucleotides - chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Polymers</topic><topic>Rocks</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kreysing, Moritz</creatorcontrib><creatorcontrib>Keil, Lorenz</creatorcontrib><creatorcontrib>Lanzmich, Simon</creatorcontrib><creatorcontrib>Braun, Dieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kreysing, Moritz</au><au>Keil, Lorenz</au><au>Lanzmich, Simon</au><au>Braun, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>7</volume><issue>3</issue><spage>203</spage><epage>208</epage><pages>203-208</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The replication of nucleic acids is central to the origin of life. On the early Earth, suitable non-equilibrium boundary conditions would have been required to surmount the effects of thermodynamic equilibrium such as the dilution and degradation of oligonucleotides. One particularly intractable experimental finding is that short genetic polymers replicate faster and outcompete longer ones, which leads to ever shorter sequences and the loss of genetic information. Here we show that a heat flux across an open pore in submerged rock concentrates replicating oligonucleotides from a constant feeding flow and selects for longer strands. Our experiments utilize the interplay of molecular thermophoresis and laminar convection, the latter driving strand separation and exponential replication. Strands of 75 nucleotides survive whereas strands half as long die out, which inverts the above dilemma of the survival of the shortest. The combined feeding, thermal cycling and positive length selection opens the door for a stable molecular evolution in the long-term microhabitat of heated porous rock.
How complex nucleic acids originally formed, despite dilution and degradation reactions, is not clear. Thermal gradients in rock pores have now been shown to be capable of trapping and thermo-cycling genetic polymers during replication. In this system long oligonucleotide strands are seen to outcompete short strands — a prerequisite for the evolution of replicating systems towards increasing complexity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25698328</pmid><doi>10.1038/nchem.2155</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2015-03, Vol.7 (3), p.203-208 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1668260806 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 639/638/204/904 639/638/440/950 639/638/92/610 Analytical Chemistry Biochemistry Boundary conditions Chemistry Chemistry/Food Science Hot Temperature Inorganic Chemistry Microhabitats Nucleic acids Oligonucleotides - chemistry Organic Chemistry Physical Chemistry Polymers Rocks Thermodynamics |
title | Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20flux%20across%20an%20open%20pore%20enables%20the%20continuous%20replication%20and%20selection%20of%20oligonucleotides%20towards%20increasing%20length&rft.jtitle=Nature%20chemistry&rft.au=Kreysing,%20Moritz&rft.date=2015-03-01&rft.volume=7&rft.issue=3&rft.spage=203&rft.epage=208&rft.pages=203-208&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2155&rft_dat=%3Cproquest_cross%3E1657317875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656386464&rft_id=info:pmid/25698328&rfr_iscdi=true |