Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction
A newly identified secreted protein, MYDGF, acts on cardiac muscle and endothelial cells to protect and repair the heart after myocardial infarction. Paracrine-acting proteins are emerging as a central mechanism by which bone marrow cell–based therapies improve tissue repair and heart function after...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2015-02, Vol.21 (2), p.140-149 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 2 |
container_start_page | 140 |
container_title | Nature medicine |
container_volume | 21 |
creator | Korf-Klingebiel, Mortimer Reboll, Marc R Klede, Stefanie Brod, Torben Pich, Andreas Polten, Felix Napp, L Christian Bauersachs, Johann Ganser, Arnold Brinkmann, Eva Reimann, Ines Kempf, Tibor Niessen, Hans W Mizrahi, Jacques Schönfeld, Hans-Joachim Iglesias, Antonio Bobadilla, Maria Wang, Yong Wollert, Kai C |
description | A newly identified secreted protein, MYDGF, acts on cardiac muscle and endothelial cells to protect and repair the heart after myocardial infarction.
Paracrine-acting proteins are emerging as a central mechanism by which bone marrow cell–based therapies improve tissue repair and heart function after myocardial infarction (MI). We carried out a bioinformatic secretome analysis in bone marrow cells from patients with acute MI to identify novel secreted proteins with therapeutic potential. Functional screens revealed a secreted protein encoded by an open reading frame on chromosome 19 (
C19orf10
) that promotes cardiac myocyte survival and angiogenesis. We show that bone marrow–derived monocytes and macrophages produce this protein endogenously to protect and repair the heart after MI, and we named it myeloid-derived growth factor (MYDGF). Whereas
Mydgf
-deficient mice develop larger infarct scars and more severe contractile dysfunction compared to wild-type mice, treatment with recombinant Mydgf reduces scar size and contractile dysfunction after MI. This study is the first to assign a biological function to MYDGF, and it may serve as a prototypical example for the development of protein-based therapies for ischemic tissue repair. |
doi_str_mv | 10.1038/nm.3778 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1668257474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A401380634</galeid><sourcerecordid>A401380634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-888354dc29b3f1c98d70a1c82b016682efacb565724eac82c7c2c64c0df81cb33</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEoqUg3gBZQoL2Iosdx4lzWa04VCqqxEncGceZZF059tZ2KPv2OGwp3WovkCV7NPPNr_HMZNlzghcEU_7Gjgta1_xBdkhYWeWkxt8fJhvXPOcNqw6yJyFcYowpZs3j7KBgjBNG-GH24-MGjNNd3oHXP6FDg3fXcYV6qaLz6HhJGud7gk_QCJ2WEQJS0idLIQ9rqT3qnTHuWtsBjRu3jRmkbS-9itrZp9mjXpoAz27eo-zru7dflh_y84v3Z8vT81xVJYs555yyslNF09KeqIZ3NZZE8aLFpKp4AamgllWsLkqQya1qVaRMhbueE9VSepQdb3XX3l1NEKIYdVBgjLTgpiD-qLC6rMuEvryHXrrJ21RdohhhlDbpuqUGaUCkD7nopZpFxWmJCeW4orNWvocawIKXxlnodXLv8Is9fDodjFrtTTjZSUhMhF9xkFMI4uzzp_9nL77tsq_usCuQJq6CM9M8s7ALvt6CyrsQPPRi7fUo_UYQLOblE3YU8_Il8sVNX6c2bcst93fb_s0opJAdwN9p_D2t3ye73Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651533915</pqid></control><display><type>article</type><title>Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Korf-Klingebiel, Mortimer ; Reboll, Marc R ; Klede, Stefanie ; Brod, Torben ; Pich, Andreas ; Polten, Felix ; Napp, L Christian ; Bauersachs, Johann ; Ganser, Arnold ; Brinkmann, Eva ; Reimann, Ines ; Kempf, Tibor ; Niessen, Hans W ; Mizrahi, Jacques ; Schönfeld, Hans-Joachim ; Iglesias, Antonio ; Bobadilla, Maria ; Wang, Yong ; Wollert, Kai C</creator><creatorcontrib>Korf-Klingebiel, Mortimer ; Reboll, Marc R ; Klede, Stefanie ; Brod, Torben ; Pich, Andreas ; Polten, Felix ; Napp, L Christian ; Bauersachs, Johann ; Ganser, Arnold ; Brinkmann, Eva ; Reimann, Ines ; Kempf, Tibor ; Niessen, Hans W ; Mizrahi, Jacques ; Schönfeld, Hans-Joachim ; Iglesias, Antonio ; Bobadilla, Maria ; Wang, Yong ; Wollert, Kai C</creatorcontrib><description>A newly identified secreted protein, MYDGF, acts on cardiac muscle and endothelial cells to protect and repair the heart after myocardial infarction.
Paracrine-acting proteins are emerging as a central mechanism by which bone marrow cell–based therapies improve tissue repair and heart function after myocardial infarction (MI). We carried out a bioinformatic secretome analysis in bone marrow cells from patients with acute MI to identify novel secreted proteins with therapeutic potential. Functional screens revealed a secreted protein encoded by an open reading frame on chromosome 19 (
C19orf10
) that promotes cardiac myocyte survival and angiogenesis. We show that bone marrow–derived monocytes and macrophages produce this protein endogenously to protect and repair the heart after MI, and we named it myeloid-derived growth factor (MYDGF). Whereas
Mydgf
-deficient mice develop larger infarct scars and more severe contractile dysfunction compared to wild-type mice, treatment with recombinant Mydgf reduces scar size and contractile dysfunction after MI. This study is the first to assign a biological function to MYDGF, and it may serve as a prototypical example for the development of protein-based therapies for ischemic tissue repair.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.3778</identifier><identifier>PMID: 25581518</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/106 ; 13/21 ; 13/51 ; 38 ; 64/110 ; 692/308/575 ; 692/699/75/2/1674 ; 82 ; 82/47 ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Bone marrow ; Bone Marrow Cells - metabolism ; Cancer Research ; Cardiovascular disease ; Care and treatment ; Cell Proliferation - drug effects ; Cell Proliferation - genetics ; Cellular therapy ; Clinical trials ; Endothelial Cells - drug effects ; Genetic aspects ; Growth factors ; Health aspects ; Heart attack ; HEK293 Cells ; Humans ; Infectious Diseases ; Interleukins - genetics ; Interleukins - metabolism ; Interleukins - pharmacology ; Macrophages - metabolism ; Medical research ; Medicine, Experimental ; Metabolic Diseases ; Mice ; Mice, Knockout ; Molecular Medicine ; Monocytes - metabolism ; Myocardial infarction ; Myocardial Infarction - metabolism ; Myocardial Reperfusion Injury - metabolism ; Myocytes, Cardiac ; Neovascularization, Physiologic ; Neurosciences ; Proteins ; Therapy ; Tissue engineering ; Tissues ; Ventricular Remodeling - drug effects ; Ventricular Remodeling - genetics</subject><ispartof>Nature medicine, 2015-02, Vol.21 (2), p.140-149</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-888354dc29b3f1c98d70a1c82b016682efacb565724eac82c7c2c64c0df81cb33</citedby><cites>FETCH-LOGICAL-c645t-888354dc29b3f1c98d70a1c82b016682efacb565724eac82c7c2c64c0df81cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.3778$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.3778$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25581518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Korf-Klingebiel, Mortimer</creatorcontrib><creatorcontrib>Reboll, Marc R</creatorcontrib><creatorcontrib>Klede, Stefanie</creatorcontrib><creatorcontrib>Brod, Torben</creatorcontrib><creatorcontrib>Pich, Andreas</creatorcontrib><creatorcontrib>Polten, Felix</creatorcontrib><creatorcontrib>Napp, L Christian</creatorcontrib><creatorcontrib>Bauersachs, Johann</creatorcontrib><creatorcontrib>Ganser, Arnold</creatorcontrib><creatorcontrib>Brinkmann, Eva</creatorcontrib><creatorcontrib>Reimann, Ines</creatorcontrib><creatorcontrib>Kempf, Tibor</creatorcontrib><creatorcontrib>Niessen, Hans W</creatorcontrib><creatorcontrib>Mizrahi, Jacques</creatorcontrib><creatorcontrib>Schönfeld, Hans-Joachim</creatorcontrib><creatorcontrib>Iglesias, Antonio</creatorcontrib><creatorcontrib>Bobadilla, Maria</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Wollert, Kai C</creatorcontrib><title>Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>A newly identified secreted protein, MYDGF, acts on cardiac muscle and endothelial cells to protect and repair the heart after myocardial infarction.
Paracrine-acting proteins are emerging as a central mechanism by which bone marrow cell–based therapies improve tissue repair and heart function after myocardial infarction (MI). We carried out a bioinformatic secretome analysis in bone marrow cells from patients with acute MI to identify novel secreted proteins with therapeutic potential. Functional screens revealed a secreted protein encoded by an open reading frame on chromosome 19 (
C19orf10
) that promotes cardiac myocyte survival and angiogenesis. We show that bone marrow–derived monocytes and macrophages produce this protein endogenously to protect and repair the heart after MI, and we named it myeloid-derived growth factor (MYDGF). Whereas
Mydgf
-deficient mice develop larger infarct scars and more severe contractile dysfunction compared to wild-type mice, treatment with recombinant Mydgf reduces scar size and contractile dysfunction after MI. This study is the first to assign a biological function to MYDGF, and it may serve as a prototypical example for the development of protein-based therapies for ischemic tissue repair.</description><subject>13/106</subject><subject>13/21</subject><subject>13/51</subject><subject>38</subject><subject>64/110</subject><subject>692/308/575</subject><subject>692/699/75/2/1674</subject><subject>82</subject><subject>82/47</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cancer Research</subject><subject>Cardiovascular disease</subject><subject>Care and treatment</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Proliferation - genetics</subject><subject>Cellular therapy</subject><subject>Clinical trials</subject><subject>Endothelial Cells - drug effects</subject><subject>Genetic aspects</subject><subject>Growth factors</subject><subject>Health aspects</subject><subject>Heart attack</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Interleukins - genetics</subject><subject>Interleukins - metabolism</subject><subject>Interleukins - pharmacology</subject><subject>Macrophages - metabolism</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecular Medicine</subject><subject>Monocytes - metabolism</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Reperfusion Injury - metabolism</subject><subject>Myocytes, Cardiac</subject><subject>Neovascularization, Physiologic</subject><subject>Neurosciences</subject><subject>Proteins</subject><subject>Therapy</subject><subject>Tissue engineering</subject><subject>Tissues</subject><subject>Ventricular Remodeling - drug effects</subject><subject>Ventricular Remodeling - genetics</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkttu1DAQhiMEoqUg3gBZQoL2Iosdx4lzWa04VCqqxEncGceZZF059tZ2KPv2OGwp3WovkCV7NPPNr_HMZNlzghcEU_7Gjgta1_xBdkhYWeWkxt8fJhvXPOcNqw6yJyFcYowpZs3j7KBgjBNG-GH24-MGjNNd3oHXP6FDg3fXcYV6qaLz6HhJGud7gk_QCJ2WEQJS0idLIQ9rqT3qnTHuWtsBjRu3jRmkbS-9itrZp9mjXpoAz27eo-zru7dflh_y84v3Z8vT81xVJYs555yyslNF09KeqIZ3NZZE8aLFpKp4AamgllWsLkqQya1qVaRMhbueE9VSepQdb3XX3l1NEKIYdVBgjLTgpiD-qLC6rMuEvryHXrrJ21RdohhhlDbpuqUGaUCkD7nopZpFxWmJCeW4orNWvocawIKXxlnodXLv8Is9fDodjFrtTTjZSUhMhF9xkFMI4uzzp_9nL77tsq_usCuQJq6CM9M8s7ALvt6CyrsQPPRi7fUo_UYQLOblE3YU8_Il8sVNX6c2bcst93fb_s0opJAdwN9p_D2t3ye73Fg</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Korf-Klingebiel, Mortimer</creator><creator>Reboll, Marc R</creator><creator>Klede, Stefanie</creator><creator>Brod, Torben</creator><creator>Pich, Andreas</creator><creator>Polten, Felix</creator><creator>Napp, L Christian</creator><creator>Bauersachs, Johann</creator><creator>Ganser, Arnold</creator><creator>Brinkmann, Eva</creator><creator>Reimann, Ines</creator><creator>Kempf, Tibor</creator><creator>Niessen, Hans W</creator><creator>Mizrahi, Jacques</creator><creator>Schönfeld, Hans-Joachim</creator><creator>Iglesias, Antonio</creator><creator>Bobadilla, Maria</creator><creator>Wang, Yong</creator><creator>Wollert, Kai C</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20150201</creationdate><title>Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction</title><author>Korf-Klingebiel, Mortimer ; Reboll, Marc R ; Klede, Stefanie ; Brod, Torben ; Pich, Andreas ; Polten, Felix ; Napp, L Christian ; Bauersachs, Johann ; Ganser, Arnold ; Brinkmann, Eva ; Reimann, Ines ; Kempf, Tibor ; Niessen, Hans W ; Mizrahi, Jacques ; Schönfeld, Hans-Joachim ; Iglesias, Antonio ; Bobadilla, Maria ; Wang, Yong ; Wollert, Kai C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-888354dc29b3f1c98d70a1c82b016682efacb565724eac82c7c2c64c0df81cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13/106</topic><topic>13/21</topic><topic>13/51</topic><topic>38</topic><topic>64/110</topic><topic>692/308/575</topic><topic>692/699/75/2/1674</topic><topic>82</topic><topic>82/47</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cancer Research</topic><topic>Cardiovascular disease</topic><topic>Care and treatment</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Proliferation - genetics</topic><topic>Cellular therapy</topic><topic>Clinical trials</topic><topic>Endothelial Cells - drug effects</topic><topic>Genetic aspects</topic><topic>Growth factors</topic><topic>Health aspects</topic><topic>Heart attack</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Interleukins - genetics</topic><topic>Interleukins - metabolism</topic><topic>Interleukins - pharmacology</topic><topic>Macrophages - metabolism</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecular Medicine</topic><topic>Monocytes - metabolism</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Reperfusion Injury - metabolism</topic><topic>Myocytes, Cardiac</topic><topic>Neovascularization, Physiologic</topic><topic>Neurosciences</topic><topic>Proteins</topic><topic>Therapy</topic><topic>Tissue engineering</topic><topic>Tissues</topic><topic>Ventricular Remodeling - drug effects</topic><topic>Ventricular Remodeling - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korf-Klingebiel, Mortimer</creatorcontrib><creatorcontrib>Reboll, Marc R</creatorcontrib><creatorcontrib>Klede, Stefanie</creatorcontrib><creatorcontrib>Brod, Torben</creatorcontrib><creatorcontrib>Pich, Andreas</creatorcontrib><creatorcontrib>Polten, Felix</creatorcontrib><creatorcontrib>Napp, L Christian</creatorcontrib><creatorcontrib>Bauersachs, Johann</creatorcontrib><creatorcontrib>Ganser, Arnold</creatorcontrib><creatorcontrib>Brinkmann, Eva</creatorcontrib><creatorcontrib>Reimann, Ines</creatorcontrib><creatorcontrib>Kempf, Tibor</creatorcontrib><creatorcontrib>Niessen, Hans W</creatorcontrib><creatorcontrib>Mizrahi, Jacques</creatorcontrib><creatorcontrib>Schönfeld, Hans-Joachim</creatorcontrib><creatorcontrib>Iglesias, Antonio</creatorcontrib><creatorcontrib>Bobadilla, Maria</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Wollert, Kai C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korf-Klingebiel, Mortimer</au><au>Reboll, Marc R</au><au>Klede, Stefanie</au><au>Brod, Torben</au><au>Pich, Andreas</au><au>Polten, Felix</au><au>Napp, L Christian</au><au>Bauersachs, Johann</au><au>Ganser, Arnold</au><au>Brinkmann, Eva</au><au>Reimann, Ines</au><au>Kempf, Tibor</au><au>Niessen, Hans W</au><au>Mizrahi, Jacques</au><au>Schönfeld, Hans-Joachim</au><au>Iglesias, Antonio</au><au>Bobadilla, Maria</au><au>Wang, Yong</au><au>Wollert, Kai C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>21</volume><issue>2</issue><spage>140</spage><epage>149</epage><pages>140-149</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>A newly identified secreted protein, MYDGF, acts on cardiac muscle and endothelial cells to protect and repair the heart after myocardial infarction.
Paracrine-acting proteins are emerging as a central mechanism by which bone marrow cell–based therapies improve tissue repair and heart function after myocardial infarction (MI). We carried out a bioinformatic secretome analysis in bone marrow cells from patients with acute MI to identify novel secreted proteins with therapeutic potential. Functional screens revealed a secreted protein encoded by an open reading frame on chromosome 19 (
C19orf10
) that promotes cardiac myocyte survival and angiogenesis. We show that bone marrow–derived monocytes and macrophages produce this protein endogenously to protect and repair the heart after MI, and we named it myeloid-derived growth factor (MYDGF). Whereas
Mydgf
-deficient mice develop larger infarct scars and more severe contractile dysfunction compared to wild-type mice, treatment with recombinant Mydgf reduces scar size and contractile dysfunction after MI. This study is the first to assign a biological function to MYDGF, and it may serve as a prototypical example for the development of protein-based therapies for ischemic tissue repair.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25581518</pmid><doi>10.1038/nm.3778</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2015-02, Vol.21 (2), p.140-149 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_proquest_miscellaneous_1668257474 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 13/106 13/21 13/51 38 64/110 692/308/575 692/699/75/2/1674 82 82/47 Animals Biomedical and Life Sciences Biomedicine Bone marrow Bone Marrow Cells - metabolism Cancer Research Cardiovascular disease Care and treatment Cell Proliferation - drug effects Cell Proliferation - genetics Cellular therapy Clinical trials Endothelial Cells - drug effects Genetic aspects Growth factors Health aspects Heart attack HEK293 Cells Humans Infectious Diseases Interleukins - genetics Interleukins - metabolism Interleukins - pharmacology Macrophages - metabolism Medical research Medicine, Experimental Metabolic Diseases Mice Mice, Knockout Molecular Medicine Monocytes - metabolism Myocardial infarction Myocardial Infarction - metabolism Myocardial Reperfusion Injury - metabolism Myocytes, Cardiac Neovascularization, Physiologic Neurosciences Proteins Therapy Tissue engineering Tissues Ventricular Remodeling - drug effects Ventricular Remodeling - genetics |
title | Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myeloid-derived%20growth%20factor%20(C19orf10)%20mediates%20cardiac%20repair%20following%20myocardial%20infarction&rft.jtitle=Nature%20medicine&rft.au=Korf-Klingebiel,%20Mortimer&rft.date=2015-02-01&rft.volume=21&rft.issue=2&rft.spage=140&rft.epage=149&rft.pages=140-149&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.3778&rft_dat=%3Cgale_proqu%3EA401380634%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651533915&rft_id=info:pmid/25581518&rft_galeid=A401380634&rfr_iscdi=true |