miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction

Validation of the cellular targets of microRNAs remains an ongoing priority. miR-CLIP, a new method based on psoralen crosslinking, immunoprecipitation and biotin affinity pulldowns, was applied to determine the miR-106a targetome, which included the H19 lncRNA. Identifying the interaction partners...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2015-02, Vol.11 (2), p.107-114
Hauptverfasser: Imig, Jochen, Brunschweiger, Andreas, Brümmer, Anneke, Guennewig, Boris, Mittal, Nitish, Kishore, Shivendra, Tsikrika, Panagiota, Gerber, André P, Zavolan, Mihaela, Hall, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 2
container_start_page 107
container_title Nature chemical biology
container_volume 11
creator Imig, Jochen
Brunschweiger, Andreas
Brümmer, Anneke
Guennewig, Boris
Mittal, Nitish
Kishore, Shivendra
Tsikrika, Panagiota
Gerber, André P
Zavolan, Mihaela
Hall, Jonathan
description Validation of the cellular targets of microRNAs remains an ongoing priority. miR-CLIP, a new method based on psoralen crosslinking, immunoprecipitation and biotin affinity pulldowns, was applied to determine the miR-106a targetome, which included the H19 lncRNA. Identifying the interaction partners of noncoding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA crosslinking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-crosslinking and Argonaute 2 immunopurification followed by streptavidin affinity purification of probe-linked RNAs provided selectivity in the capture of targets, which were identified by deep sequencing. miR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. miR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long noncoding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation, levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a 'sponge' for these miRNAs.
doi_str_mv 10.1038/nchembio.1713
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1668256517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3563852851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-2cd8f8c29752ee5548b1e21c208139993775d412b63c83d391321aff0b2097ed3</originalsourceid><addsrcrecordid>eNqN0U1LwzAYB_AgivPt6FUKXrx05kmaNjnKUDcYKr6cS5o-1Y61mUkrePM7-A39JGZsiogHTwn5__KE8CfkEOgQKJenrXnCpqjtEDLgG2QHhGBxkqRq83sv6IDsej-jlKcpyG0yYEJwkIrukLumvo1H08lNZPSi6x1Gtop0FE6vzqJOu0fsbINR3xr7gs6HaF63ZhmOQX28vS-vA011VLcdOm262rb7ZKvSc48H63WPPFyc34_G8fT6cjI6m8ZGMNXFzJSykoapTDBEIRJZADIwjErgSimeZaJMgBUpN5KXXAFnoKuKFoyqDEu-R05WcxfOPvfou7ypvcH5XLdoe59DmkomUgHZP6hgCXBgPNDjX3Rme9eGjwSVZEApAxFUvFLGWe8dVvnC1Y12rznQfFlM_lVMviwm-KP11L5osPzWX00EMFwBH6L2Ed2PZ_-c-AncL5bm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647100215</pqid></control><display><type>article</type><title>miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Imig, Jochen ; Brunschweiger, Andreas ; Brümmer, Anneke ; Guennewig, Boris ; Mittal, Nitish ; Kishore, Shivendra ; Tsikrika, Panagiota ; Gerber, André P ; Zavolan, Mihaela ; Hall, Jonathan</creator><creatorcontrib>Imig, Jochen ; Brunschweiger, Andreas ; Brümmer, Anneke ; Guennewig, Boris ; Mittal, Nitish ; Kishore, Shivendra ; Tsikrika, Panagiota ; Gerber, André P ; Zavolan, Mihaela ; Hall, Jonathan</creatorcontrib><description>Validation of the cellular targets of microRNAs remains an ongoing priority. miR-CLIP, a new method based on psoralen crosslinking, immunoprecipitation and biotin affinity pulldowns, was applied to determine the miR-106a targetome, which included the H19 lncRNA. Identifying the interaction partners of noncoding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA crosslinking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-crosslinking and Argonaute 2 immunopurification followed by streptavidin affinity purification of probe-linked RNAs provided selectivity in the capture of targets, which were identified by deep sequencing. miR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. miR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long noncoding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation, levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a 'sponge' for these miRNAs.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.1713</identifier><identifier>PMID: 25531890</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 13/109 ; 38 ; 38/91 ; 631/92/500 ; Base Sequence ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Biotin ; Biotin - metabolism ; Cell Biology ; Cell Culture Techniques ; Cell differentiation ; Cell Differentiation - genetics ; Chemistry ; Chemistry/Food Science ; Computational Biology - methods ; Ficusin - metabolism ; HeLa Cells ; Humans ; Immunology ; Immunoprecipitation ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Molecular Sequence Data ; Muscle Cells - cytology ; Muscle Cells - metabolism ; Myoblasts - cytology ; Myoblasts - metabolism ; Real-Time Polymerase Chain Reaction ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RNA, Messenger - genetics ; Transcriptome</subject><ispartof>Nature chemical biology, 2015-02, Vol.11 (2), p.107-114</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>Copyright Nature Publishing Group Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-2cd8f8c29752ee5548b1e21c208139993775d412b63c83d391321aff0b2097ed3</citedby><cites>FETCH-LOGICAL-c529t-2cd8f8c29752ee5548b1e21c208139993775d412b63c83d391321aff0b2097ed3</cites><orcidid>0000-0002-4401-1495 ; 0000-0001-6375-2240 ; 0000000163752240 ; 0000000244011495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.1713$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.1713$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25531890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imig, Jochen</creatorcontrib><creatorcontrib>Brunschweiger, Andreas</creatorcontrib><creatorcontrib>Brümmer, Anneke</creatorcontrib><creatorcontrib>Guennewig, Boris</creatorcontrib><creatorcontrib>Mittal, Nitish</creatorcontrib><creatorcontrib>Kishore, Shivendra</creatorcontrib><creatorcontrib>Tsikrika, Panagiota</creatorcontrib><creatorcontrib>Gerber, André P</creatorcontrib><creatorcontrib>Zavolan, Mihaela</creatorcontrib><creatorcontrib>Hall, Jonathan</creatorcontrib><title>miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Validation of the cellular targets of microRNAs remains an ongoing priority. miR-CLIP, a new method based on psoralen crosslinking, immunoprecipitation and biotin affinity pulldowns, was applied to determine the miR-106a targetome, which included the H19 lncRNA. Identifying the interaction partners of noncoding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA crosslinking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-crosslinking and Argonaute 2 immunopurification followed by streptavidin affinity purification of probe-linked RNAs provided selectivity in the capture of targets, which were identified by deep sequencing. miR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. miR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long noncoding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation, levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a 'sponge' for these miRNAs.</description><subject>13</subject><subject>13/109</subject><subject>38</subject><subject>38/91</subject><subject>631/92/500</subject><subject>Base Sequence</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Biotin</subject><subject>Biotin - metabolism</subject><subject>Cell Biology</subject><subject>Cell Culture Techniques</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Computational Biology - methods</subject><subject>Ficusin - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Immunology</subject><subject>Immunoprecipitation</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Muscle Cells - cytology</subject><subject>Muscle Cells - metabolism</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>Transcriptome</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0U1LwzAYB_AgivPt6FUKXrx05kmaNjnKUDcYKr6cS5o-1Y61mUkrePM7-A39JGZsiogHTwn5__KE8CfkEOgQKJenrXnCpqjtEDLgG2QHhGBxkqRq83sv6IDsej-jlKcpyG0yYEJwkIrukLumvo1H08lNZPSi6x1Gtop0FE6vzqJOu0fsbINR3xr7gs6HaF63ZhmOQX28vS-vA011VLcdOm262rb7ZKvSc48H63WPPFyc34_G8fT6cjI6m8ZGMNXFzJSykoapTDBEIRJZADIwjErgSimeZaJMgBUpN5KXXAFnoKuKFoyqDEu-R05WcxfOPvfou7ypvcH5XLdoe59DmkomUgHZP6hgCXBgPNDjX3Rme9eGjwSVZEApAxFUvFLGWe8dVvnC1Y12rznQfFlM_lVMviwm-KP11L5osPzWX00EMFwBH6L2Ed2PZ_-c-AncL5bm</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Imig, Jochen</creator><creator>Brunschweiger, Andreas</creator><creator>Brümmer, Anneke</creator><creator>Guennewig, Boris</creator><creator>Mittal, Nitish</creator><creator>Kishore, Shivendra</creator><creator>Tsikrika, Panagiota</creator><creator>Gerber, André P</creator><creator>Zavolan, Mihaela</creator><creator>Hall, Jonathan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4401-1495</orcidid><orcidid>https://orcid.org/0000-0001-6375-2240</orcidid><orcidid>https://orcid.org/0000000163752240</orcidid><orcidid>https://orcid.org/0000000244011495</orcidid></search><sort><creationdate>20150201</creationdate><title>miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction</title><author>Imig, Jochen ; Brunschweiger, Andreas ; Brümmer, Anneke ; Guennewig, Boris ; Mittal, Nitish ; Kishore, Shivendra ; Tsikrika, Panagiota ; Gerber, André P ; Zavolan, Mihaela ; Hall, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-2cd8f8c29752ee5548b1e21c208139993775d412b63c83d391321aff0b2097ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13</topic><topic>13/109</topic><topic>38</topic><topic>38/91</topic><topic>631/92/500</topic><topic>Base Sequence</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Biotin</topic><topic>Biotin - metabolism</topic><topic>Cell Biology</topic><topic>Cell Culture Techniques</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Computational Biology - methods</topic><topic>Ficusin - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Immunology</topic><topic>Immunoprecipitation</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Muscle Cells - cytology</topic><topic>Muscle Cells - metabolism</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imig, Jochen</creatorcontrib><creatorcontrib>Brunschweiger, Andreas</creatorcontrib><creatorcontrib>Brümmer, Anneke</creatorcontrib><creatorcontrib>Guennewig, Boris</creatorcontrib><creatorcontrib>Mittal, Nitish</creatorcontrib><creatorcontrib>Kishore, Shivendra</creatorcontrib><creatorcontrib>Tsikrika, Panagiota</creatorcontrib><creatorcontrib>Gerber, André P</creatorcontrib><creatorcontrib>Zavolan, Mihaela</creatorcontrib><creatorcontrib>Hall, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imig, Jochen</au><au>Brunschweiger, Andreas</au><au>Brümmer, Anneke</au><au>Guennewig, Boris</au><au>Mittal, Nitish</au><au>Kishore, Shivendra</au><au>Tsikrika, Panagiota</au><au>Gerber, André P</au><au>Zavolan, Mihaela</au><au>Hall, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>11</volume><issue>2</issue><spage>107</spage><epage>114</epage><pages>107-114</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Validation of the cellular targets of microRNAs remains an ongoing priority. miR-CLIP, a new method based on psoralen crosslinking, immunoprecipitation and biotin affinity pulldowns, was applied to determine the miR-106a targetome, which included the H19 lncRNA. Identifying the interaction partners of noncoding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA crosslinking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-crosslinking and Argonaute 2 immunopurification followed by streptavidin affinity purification of probe-linked RNAs provided selectivity in the capture of targets, which were identified by deep sequencing. miR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. miR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long noncoding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation, levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a 'sponge' for these miRNAs.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25531890</pmid><doi>10.1038/nchembio.1713</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4401-1495</orcidid><orcidid>https://orcid.org/0000-0001-6375-2240</orcidid><orcidid>https://orcid.org/0000000163752240</orcidid><orcidid>https://orcid.org/0000000244011495</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2015-02, Vol.11 (2), p.107-114
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_1668256517
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 13
13/109
38
38/91
631/92/500
Base Sequence
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Biotin
Biotin - metabolism
Cell Biology
Cell Culture Techniques
Cell differentiation
Cell Differentiation - genetics
Chemistry
Chemistry/Food Science
Computational Biology - methods
Ficusin - metabolism
HeLa Cells
Humans
Immunology
Immunoprecipitation
MicroRNAs - genetics
MicroRNAs - metabolism
Molecular Sequence Data
Muscle Cells - cytology
Muscle Cells - metabolism
Myoblasts - cytology
Myoblasts - metabolism
Real-Time Polymerase Chain Reaction
Ribonucleic acid
RNA
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Messenger - genetics
Transcriptome
title miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-CLIP%20capture%20of%20a%20miRNA%20targetome%20uncovers%20a%20lincRNA%20H19%E2%80%93miR-106a%20interaction&rft.jtitle=Nature%20chemical%20biology&rft.au=Imig,%20Jochen&rft.date=2015-02-01&rft.volume=11&rft.issue=2&rft.spage=107&rft.epage=114&rft.pages=107-114&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.1713&rft_dat=%3Cproquest_cross%3E3563852851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647100215&rft_id=info:pmid/25531890&rfr_iscdi=true