All Else Equal in Theory and Data (Big or Small)
The forms of explanation that dominate political science research in the formal-theory and causal-inference traditions are closely connected. Specifically, each explanation makes essential use of different but related types of all-else-equal claims. The emergence of "big data" already has...
Gespeichert in:
Veröffentlicht in: | PS, political science & politics political science & politics, 2015-01, Vol.48 (1), p.89-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | PS, political science & politics |
container_volume | 48 |
creator | Ashworth, Scott Berry, Christopher R. Mesquita, Ethan Bueno de |
description | The forms of explanation that dominate political science research in the formal-theory and causal-inference traditions are closely connected. Specifically, each explanation makes essential use of different but related types of all-else-equal claims. The emergence of "big data" already has begun to alter the landscape of empirical social science by making new sources of information (and, thus, new phenomena) amenable to quantitative analysis. However, neither the value of explanations rooted in all-else-equal claims nor the challenges associated with providing them will be altered in the least by big data. |
doi_str_mv | 10.1017/S1049096514001802 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1667940932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1049096514001802</cupid><jstor_id>43284716</jstor_id><sourcerecordid>43284716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-8f4a5158db0a294afb2d0e9040e32ff9874008c0eca88c7ae5cf04a8bc2bff0a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwIMQ8FIPq5NNspsca61_oOCh9bxks0ndkt1tk-6h396UFhHFuczA-703wyB0TeCeAMkf5gSYBJlxwgCIgPQEDQinecIl5adxjnKy18_RRQgriCU4DBCMncNTFwyebnrlcN3ixafp_A6rtsJPaqvw6LFe4s7jeaOcu7tEZ1ZF_urYh-jjebqYvCaz95e3yXiWaJbRbSIsU5xwUZWgUsmULdMKjAQGhqbWSpHHO4UGo5UQOleGawtMiVKnpbWg6BCNDrlr3216E7ZFUwdtnFOt6fpQkCzLJQNJ04je_kJXXe_beF2kGCEko5JGihwo7bsQvLHF2teN8ruCQLH_YfHnh9Fzc_Cswrbz3wZGU8HyGDtE9JipmtLX1dL8WP1v6hc6Lnkt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641116393</pqid></control><display><type>article</type><title>All Else Equal in Theory and Data (Big or Small)</title><source>Worldwide Political Science Abstracts</source><source>JSTOR</source><source>Cambridge University Press Journals Complete</source><creator>Ashworth, Scott ; Berry, Christopher R. ; Mesquita, Ethan Bueno de</creator><creatorcontrib>Ashworth, Scott ; Berry, Christopher R. ; Mesquita, Ethan Bueno de</creatorcontrib><description>The forms of explanation that dominate political science research in the formal-theory and causal-inference traditions are closely connected. Specifically, each explanation makes essential use of different but related types of all-else-equal claims. The emergence of "big data" already has begun to alter the landscape of empirical social science by making new sources of information (and, thus, new phenomena) amenable to quantitative analysis. However, neither the value of explanations rooted in all-else-equal claims nor the challenges associated with providing them will be altered in the least by big data.</description><identifier>ISSN: 1049-0965</identifier><identifier>EISSN: 1537-5935</identifier><identifier>DOI: 10.1017/S1049096514001802</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Beliefs ; Causality ; Data analysis ; Inferences ; Landscape ; Political science ; Political Science Research ; Quantitative Methods ; Regression (Statistics) ; Social Sciences ; Symposium: Big Data, Causal Inference, and Formal Theory: Contradictory Trends in Political Science?</subject><ispartof>PS, political science & politics, 2015-01, Vol.48 (1), p.89-94</ispartof><rights>Copyright © American Political Science Association 2015</rights><rights>Copyright © 2015 American Political Science Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-8f4a5158db0a294afb2d0e9040e32ff9874008c0eca88c7ae5cf04a8bc2bff0a3</citedby><cites>FETCH-LOGICAL-c463t-8f4a5158db0a294afb2d0e9040e32ff9874008c0eca88c7ae5cf04a8bc2bff0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43284716$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1049096514001802/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,12845,27924,27925,55628,58017,58250</link.rule.ids></links><search><creatorcontrib>Ashworth, Scott</creatorcontrib><creatorcontrib>Berry, Christopher R.</creatorcontrib><creatorcontrib>Mesquita, Ethan Bueno de</creatorcontrib><title>All Else Equal in Theory and Data (Big or Small)</title><title>PS, political science & politics</title><addtitle>APSC</addtitle><description>The forms of explanation that dominate political science research in the formal-theory and causal-inference traditions are closely connected. Specifically, each explanation makes essential use of different but related types of all-else-equal claims. The emergence of "big data" already has begun to alter the landscape of empirical social science by making new sources of information (and, thus, new phenomena) amenable to quantitative analysis. However, neither the value of explanations rooted in all-else-equal claims nor the challenges associated with providing them will be altered in the least by big data.</description><subject>Beliefs</subject><subject>Causality</subject><subject>Data analysis</subject><subject>Inferences</subject><subject>Landscape</subject><subject>Political science</subject><subject>Political Science Research</subject><subject>Quantitative Methods</subject><subject>Regression (Statistics)</subject><subject>Social Sciences</subject><subject>Symposium: Big Data, Causal Inference, and Formal Theory: Contradictory Trends in Political Science?</subject><issn>1049-0965</issn><issn>1537-5935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwIMQ8FIPq5NNspsca61_oOCh9bxks0ndkt1tk-6h396UFhHFuczA-703wyB0TeCeAMkf5gSYBJlxwgCIgPQEDQinecIl5adxjnKy18_RRQgriCU4DBCMncNTFwyebnrlcN3ixafp_A6rtsJPaqvw6LFe4s7jeaOcu7tEZ1ZF_urYh-jjebqYvCaz95e3yXiWaJbRbSIsU5xwUZWgUsmULdMKjAQGhqbWSpHHO4UGo5UQOleGawtMiVKnpbWg6BCNDrlr3216E7ZFUwdtnFOt6fpQkCzLJQNJ04je_kJXXe_beF2kGCEko5JGihwo7bsQvLHF2teN8ruCQLH_YfHnh9Fzc_Cswrbz3wZGU8HyGDtE9JipmtLX1dL8WP1v6hc6Lnkt</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Ashworth, Scott</creator><creator>Berry, Christopher R.</creator><creator>Mesquita, Ethan Bueno de</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7UB</scope><scope>7XB</scope><scope>88B</scope><scope>88F</scope><scope>88J</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KC-</scope><scope>M0P</scope><scope>M1Q</scope><scope>M2L</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20150101</creationdate><title>All Else Equal in Theory and Data (Big or Small)</title><author>Ashworth, Scott ; Berry, Christopher R. ; Mesquita, Ethan Bueno de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-8f4a5158db0a294afb2d0e9040e32ff9874008c0eca88c7ae5cf04a8bc2bff0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Beliefs</topic><topic>Causality</topic><topic>Data analysis</topic><topic>Inferences</topic><topic>Landscape</topic><topic>Political science</topic><topic>Political Science Research</topic><topic>Quantitative Methods</topic><topic>Regression (Statistics)</topic><topic>Social Sciences</topic><topic>Symposium: Big Data, Causal Inference, and Formal Theory: Contradictory Trends in Political Science?</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashworth, Scott</creatorcontrib><creatorcontrib>Berry, Christopher R.</creatorcontrib><creatorcontrib>Mesquita, Ethan Bueno de</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Worldwide Political Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection (Proquest) (PQ_SDU_P3)</collection><collection>Politics Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Politics Collection</collection><collection>Education Database</collection><collection>Military Database</collection><collection>Political Science Database</collection><collection>ProQuest research library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>PS, political science & politics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashworth, Scott</au><au>Berry, Christopher R.</au><au>Mesquita, Ethan Bueno de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All Else Equal in Theory and Data (Big or Small)</atitle><jtitle>PS, political science & politics</jtitle><addtitle>APSC</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>48</volume><issue>1</issue><spage>89</spage><epage>94</epage><pages>89-94</pages><issn>1049-0965</issn><eissn>1537-5935</eissn><abstract>The forms of explanation that dominate political science research in the formal-theory and causal-inference traditions are closely connected. Specifically, each explanation makes essential use of different but related types of all-else-equal claims. The emergence of "big data" already has begun to alter the landscape of empirical social science by making new sources of information (and, thus, new phenomena) amenable to quantitative analysis. However, neither the value of explanations rooted in all-else-equal claims nor the challenges associated with providing them will be altered in the least by big data.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S1049096514001802</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-0965 |
ispartof | PS, political science & politics, 2015-01, Vol.48 (1), p.89-94 |
issn | 1049-0965 1537-5935 |
language | eng |
recordid | cdi_proquest_miscellaneous_1667940932 |
source | Worldwide Political Science Abstracts; JSTOR; Cambridge University Press Journals Complete |
subjects | Beliefs Causality Data analysis Inferences Landscape Political science Political Science Research Quantitative Methods Regression (Statistics) Social Sciences Symposium: Big Data, Causal Inference, and Formal Theory: Contradictory Trends in Political Science? |
title | All Else Equal in Theory and Data (Big or Small) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%20Else%20Equal%20in%20Theory%20and%20Data%20(Big%20or%20Small)&rft.jtitle=PS,%20political%20science%20&%20politics&rft.au=Ashworth,%20Scott&rft.date=2015-01-01&rft.volume=48&rft.issue=1&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.issn=1049-0965&rft.eissn=1537-5935&rft_id=info:doi/10.1017/S1049096514001802&rft_dat=%3Cjstor_proqu%3E43284716%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641116393&rft_id=info:pmid/&rft_cupid=10_1017_S1049096514001802&rft_jstor_id=43284716&rfr_iscdi=true |