ESTIMATION OF NONPARAMETRIC MODELS WITH SIMULTANEITY
We introduce methods for estimating nonparametric, nonadditive models with simultaneity. The methods are developed by directly connecting the elements of the structural system to be estimated with features of the density of the observable variables, such as ratios of derivatives or averages of produ...
Gespeichert in:
Veröffentlicht in: | Econometrica 2015-01, Vol.83 (1), p.1-66 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Econometrica |
container_volume | 83 |
creator | Matzkin, Rosa L. |
description | We introduce methods for estimating nonparametric, nonadditive models with simultaneity. The methods are developed by directly connecting the elements of the structural system to be estimated with features of the density of the observable variables, such as ratios of derivatives or averages of products of derivatives of this density. The estimators are therefore easily computed functionals of a nonparametric estimator of the density of the observable variables. We consider in detail a model where to each structural equation there corresponds an exclusive regressor and a model with one equation of interest and one instrument that is included in a second equation. For both models, we provide new characterizations of observational equivalence on a set, in terms of the density of the observable variables and derivatives of the structural functions. Based on those characterizations, we develop two estimation methods. In the first method, the estimators of the structural derivatives are calculated by a simple matrix inversion and matrix multiplication, analogous to a standard least squares estimator, but with the elements of the matrices being averages of products of derivatives of non-parametric density estimators. In the second method, the estimators of the structural derivatives are calculated in two steps. In a first step, values of the instrument are found at which the density of the observable variables satisfies some properties. In the second step, the estimators are calculated directly from the values of derivatives of the density of the observable variables evaluated at the found values of the instrument. We show that both pointwise estimators are consistent and asymptotically normal. |
doi_str_mv | 10.3982/ECTA9348 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1667353189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43616921</jstor_id><sourcerecordid>43616921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4522-36c0789c13f4aa194ceb5763e6d579e7a0cf4750af7417ea1b7ebbe2e871c0fe3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFbBPyAE3LhJnVfmsQwxtYE8pJ0irsJknEBL2tRMS-m_N1ofIAgX7l1859zDAeAawRGRAt_HkQoloeIEDBBlwoeY4VMwgBBhXzKBz8GFc0sIYdDPANB4ppIsVEmRe8XYy4v8KZyGWaymSeRlxUOczrznRE28WZLNUxXmcaJeLsFZrRtnr772EMzHsYomflo8JlGY-oYGGPuEGciFNIjUVGskqbFVwBmx7DXg0nINTU15AHXNKeJWo4rbqrLYCo4MrC0Zgruj76Zr33bWbcvVwhnbNHpt250rEWOcBAQJ2aO3f9Blu-vWfbqeCgTv30L-a2i61rnO1uWmW6x0dygRLD_qK7_r69HREd0vGnv4l_s8EOW4F9wcBUu3bbsfASUMMYkReQdcDXMj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658776307</pqid></control><display><type>article</type><title>ESTIMATION OF NONPARAMETRIC MODELS WITH SIMULTANEITY</title><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>JSTOR Mathematics & Statistics</source><creator>Matzkin, Rosa L.</creator><creatorcontrib>Matzkin, Rosa L.</creatorcontrib><description>We introduce methods for estimating nonparametric, nonadditive models with simultaneity. The methods are developed by directly connecting the elements of the structural system to be estimated with features of the density of the observable variables, such as ratios of derivatives or averages of products of derivatives of this density. The estimators are therefore easily computed functionals of a nonparametric estimator of the density of the observable variables. We consider in detail a model where to each structural equation there corresponds an exclusive regressor and a model with one equation of interest and one instrument that is included in a second equation. For both models, we provide new characterizations of observational equivalence on a set, in terms of the density of the observable variables and derivatives of the structural functions. Based on those characterizations, we develop two estimation methods. In the first method, the estimators of the structural derivatives are calculated by a simple matrix inversion and matrix multiplication, analogous to a standard least squares estimator, but with the elements of the matrices being averages of products of derivatives of non-parametric density estimators. In the second method, the estimators of the structural derivatives are calculated in two steps. In a first step, values of the instrument are found at which the density of the observable variables satisfies some properties. In the second step, the estimators are calculated directly from the values of derivatives of the density of the observable variables evaluated at the found values of the instrument. We show that both pointwise estimators are consistent and asymptotically normal.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.3982/ECTA9348</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK: Econometric Society</publisher><subject>Asymptotic methods ; Consistent estimators ; constructive identification ; Density estimation ; Derivatives ; Econometrics ; Economic analysis ; Economic models ; endogeneity ; Estimating techniques ; Estimation ; Estimation methods ; Estimators ; instrumental variables ; Instrumental variables estimation ; kernel estimators ; Least squares method ; Mathematical functions ; Matrix ; Nonparametric models ; nonseparable models ; Parameter estimation ; Regression analysis ; Simultaneity ; Simultaneous equations ; Structural analysis ; structural models ; Studies</subject><ispartof>Econometrica, 2015-01, Vol.83 (1), p.1-66</ispartof><rights>Copyright ©2015 The Econometric Society</rights><rights>2015 The Econometric Society</rights><rights>Copyright Blackwell Publishing Ltd. Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4522-36c0789c13f4aa194ceb5763e6d579e7a0cf4750af7417ea1b7ebbe2e871c0fe3</citedby><cites>FETCH-LOGICAL-c4522-36c0789c13f4aa194ceb5763e6d579e7a0cf4750af7417ea1b7ebbe2e871c0fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43616921$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43616921$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,1418,27929,27930,45579,45580,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>Matzkin, Rosa L.</creatorcontrib><title>ESTIMATION OF NONPARAMETRIC MODELS WITH SIMULTANEITY</title><title>Econometrica</title><description>We introduce methods for estimating nonparametric, nonadditive models with simultaneity. The methods are developed by directly connecting the elements of the structural system to be estimated with features of the density of the observable variables, such as ratios of derivatives or averages of products of derivatives of this density. The estimators are therefore easily computed functionals of a nonparametric estimator of the density of the observable variables. We consider in detail a model where to each structural equation there corresponds an exclusive regressor and a model with one equation of interest and one instrument that is included in a second equation. For both models, we provide new characterizations of observational equivalence on a set, in terms of the density of the observable variables and derivatives of the structural functions. Based on those characterizations, we develop two estimation methods. In the first method, the estimators of the structural derivatives are calculated by a simple matrix inversion and matrix multiplication, analogous to a standard least squares estimator, but with the elements of the matrices being averages of products of derivatives of non-parametric density estimators. In the second method, the estimators of the structural derivatives are calculated in two steps. In a first step, values of the instrument are found at which the density of the observable variables satisfies some properties. In the second step, the estimators are calculated directly from the values of derivatives of the density of the observable variables evaluated at the found values of the instrument. We show that both pointwise estimators are consistent and asymptotically normal.</description><subject>Asymptotic methods</subject><subject>Consistent estimators</subject><subject>constructive identification</subject><subject>Density estimation</subject><subject>Derivatives</subject><subject>Econometrics</subject><subject>Economic analysis</subject><subject>Economic models</subject><subject>endogeneity</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>instrumental variables</subject><subject>Instrumental variables estimation</subject><subject>kernel estimators</subject><subject>Least squares method</subject><subject>Mathematical functions</subject><subject>Matrix</subject><subject>Nonparametric models</subject><subject>nonseparable models</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Simultaneity</subject><subject>Simultaneous equations</subject><subject>Structural analysis</subject><subject>structural models</subject><subject>Studies</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFbBPyAE3LhJnVfmsQwxtYE8pJ0irsJknEBL2tRMS-m_N1ofIAgX7l1859zDAeAawRGRAt_HkQoloeIEDBBlwoeY4VMwgBBhXzKBz8GFc0sIYdDPANB4ppIsVEmRe8XYy4v8KZyGWaymSeRlxUOczrznRE28WZLNUxXmcaJeLsFZrRtnr772EMzHsYomflo8JlGY-oYGGPuEGciFNIjUVGskqbFVwBmx7DXg0nINTU15AHXNKeJWo4rbqrLYCo4MrC0Zgruj76Zr33bWbcvVwhnbNHpt250rEWOcBAQJ2aO3f9Blu-vWfbqeCgTv30L-a2i61rnO1uWmW6x0dygRLD_qK7_r69HREd0vGnv4l_s8EOW4F9wcBUu3bbsfASUMMYkReQdcDXMj</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Matzkin, Rosa L.</creator><general>Econometric Society</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20150101</creationdate><title>ESTIMATION OF NONPARAMETRIC MODELS WITH SIMULTANEITY</title><author>Matzkin, Rosa L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4522-36c0789c13f4aa194ceb5763e6d579e7a0cf4750af7417ea1b7ebbe2e871c0fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic methods</topic><topic>Consistent estimators</topic><topic>constructive identification</topic><topic>Density estimation</topic><topic>Derivatives</topic><topic>Econometrics</topic><topic>Economic analysis</topic><topic>Economic models</topic><topic>endogeneity</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>instrumental variables</topic><topic>Instrumental variables estimation</topic><topic>kernel estimators</topic><topic>Least squares method</topic><topic>Mathematical functions</topic><topic>Matrix</topic><topic>Nonparametric models</topic><topic>nonseparable models</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Simultaneity</topic><topic>Simultaneous equations</topic><topic>Structural analysis</topic><topic>structural models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matzkin, Rosa L.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matzkin, Rosa L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ESTIMATION OF NONPARAMETRIC MODELS WITH SIMULTANEITY</atitle><jtitle>Econometrica</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>83</volume><issue>1</issue><spage>1</spage><epage>66</epage><pages>1-66</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>We introduce methods for estimating nonparametric, nonadditive models with simultaneity. The methods are developed by directly connecting the elements of the structural system to be estimated with features of the density of the observable variables, such as ratios of derivatives or averages of products of derivatives of this density. The estimators are therefore easily computed functionals of a nonparametric estimator of the density of the observable variables. We consider in detail a model where to each structural equation there corresponds an exclusive regressor and a model with one equation of interest and one instrument that is included in a second equation. For both models, we provide new characterizations of observational equivalence on a set, in terms of the density of the observable variables and derivatives of the structural functions. Based on those characterizations, we develop two estimation methods. In the first method, the estimators of the structural derivatives are calculated by a simple matrix inversion and matrix multiplication, analogous to a standard least squares estimator, but with the elements of the matrices being averages of products of derivatives of non-parametric density estimators. In the second method, the estimators of the structural derivatives are calculated in two steps. In a first step, values of the instrument are found at which the density of the observable variables satisfies some properties. In the second step, the estimators are calculated directly from the values of derivatives of the density of the observable variables evaluated at the found values of the instrument. We show that both pointwise estimators are consistent and asymptotically normal.</abstract><cop>Oxford, UK</cop><pub>Econometric Society</pub><doi>10.3982/ECTA9348</doi><tpages>66</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9682 |
ispartof | Econometrica, 2015-01, Vol.83 (1), p.1-66 |
issn | 0012-9682 1468-0262 |
language | eng |
recordid | cdi_proquest_miscellaneous_1667353189 |
source | Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; JSTOR Mathematics & Statistics |
subjects | Asymptotic methods Consistent estimators constructive identification Density estimation Derivatives Econometrics Economic analysis Economic models endogeneity Estimating techniques Estimation Estimation methods Estimators instrumental variables Instrumental variables estimation kernel estimators Least squares method Mathematical functions Matrix Nonparametric models nonseparable models Parameter estimation Regression analysis Simultaneity Simultaneous equations Structural analysis structural models Studies |
title | ESTIMATION OF NONPARAMETRIC MODELS WITH SIMULTANEITY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ESTIMATION%20OF%20NONPARAMETRIC%20MODELS%20WITH%20SIMULTANEITY&rft.jtitle=Econometrica&rft.au=Matzkin,%20Rosa%20L.&rft.date=2015-01-01&rft.volume=83&rft.issue=1&rft.spage=1&rft.epage=66&rft.pages=1-66&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.3982/ECTA9348&rft_dat=%3Cjstor_proqu%3E43616921%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658776307&rft_id=info:pmid/&rft_jstor_id=43616921&rfr_iscdi=true |