Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles

The main goal of this study was to evaluate the effects of incorporation of calcium phosphate (CaP) particles on the physicochemical properties and mineralization capacity of cements in vitro. Herein, two different types of CaP particles were loaded into polymethylmethacrylate (PMMA) cements exhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2015-04, Vol.103 (3), p.548-555
Hauptverfasser: Sa, Yue, Yang, Fang, Leeuwenburgh, Sander C G, Wolke, Joop G C, Ye, Guang, de Wijn, Joost R, Jansen, John A, Wang, Yining
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 555
container_issue 3
container_start_page 548
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 103
creator Sa, Yue
Yang, Fang
Leeuwenburgh, Sander C G
Wolke, Joop G C
Ye, Guang
de Wijn, Joost R
Jansen, John A
Wang, Yining
description The main goal of this study was to evaluate the effects of incorporation of calcium phosphate (CaP) particles on the physicochemical properties and mineralization capacity of cements in vitro. Herein, two different types of CaP particles were loaded into polymethylmethacrylate (PMMA) cements exhibiting an interconnected porosity created by mixing with carboxymethylcellulose. The incorporation of CaP particles did not influence the maximum polymerization temperature of the porous PMMA, but reduced the porosity and the average pore size. Small CaP particles formed agglomerations within the PMMA pores, whereas big CaP particles were partially embedded in the PMMA matrix and partially exposed to the pores. Both types of CaP particles enhanced the mineralization capacity of PMMA cement without compromising their mechanical properties. The data presented herein suggest that porous PMMA/CaP cements hold strong promise for surgical application in bone reconstruction.
doi_str_mv 10.1002/jbm.b.33233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1667351152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3634310281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-73f7987b7f3dc0dba68b9ffef0255ecadd20cf1e27754f357b1ca2729b21d8f23</originalsourceid><addsrcrecordid>eNpd0U1rFTEUBuAgFlurK_cScFOQe50kN5OZpRSrhYIudD3k44TJJZmMSUaZ_gB_dzP2Y9FNThYPb3J4EXpHmj1pGvrpqMJe7RmjjL1AZ4Rzujv0HXn5dBfsFL3O-Vhx23D2Cp3SQ89Zd-jP0L8f45qdjnqE4LT0eE5xhlQcZCwng92E_7iSIg5ugiS9u5XFxQlHi-eY4pLr8GuAMq5-O6VOq5cFsIYAU8E-SgMG_3VlxDVeuyXgeYx5Hjc0y_qS9pDfoBMrfYa3D_Mc_br68vPy2-7m-9fry883O806UXaCWdF3QgnLjG6Mkm2nemvBNpRz0NIY2mhLgArBD5ZxoYiWVNBeUWI6S9k5urjPrWv-XiCXIbiswXs5QV1mIG0rGCeEb_TDM3qMS5rq7zbV0p6KdlMf75VOMecEdpiTCzKtA2mGrZ6h1jOo4X89Vb9_yFxUAPNkH_tgd4yMj6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666292762</pqid></control><display><type>article</type><title>Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Sa, Yue ; Yang, Fang ; Leeuwenburgh, Sander C G ; Wolke, Joop G C ; Ye, Guang ; de Wijn, Joost R ; Jansen, John A ; Wang, Yining</creator><creatorcontrib>Sa, Yue ; Yang, Fang ; Leeuwenburgh, Sander C G ; Wolke, Joop G C ; Ye, Guang ; de Wijn, Joost R ; Jansen, John A ; Wang, Yining</creatorcontrib><description>The main goal of this study was to evaluate the effects of incorporation of calcium phosphate (CaP) particles on the physicochemical properties and mineralization capacity of cements in vitro. Herein, two different types of CaP particles were loaded into polymethylmethacrylate (PMMA) cements exhibiting an interconnected porosity created by mixing with carboxymethylcellulose. The incorporation of CaP particles did not influence the maximum polymerization temperature of the porous PMMA, but reduced the porosity and the average pore size. Small CaP particles formed agglomerations within the PMMA pores, whereas big CaP particles were partially embedded in the PMMA matrix and partially exposed to the pores. Both types of CaP particles enhanced the mineralization capacity of PMMA cement without compromising their mechanical properties. The data presented herein suggest that porous PMMA/CaP cements hold strong promise for surgical application in bone reconstruction.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.33233</identifier><identifier>PMID: 24953849</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Biocompatible Materials - chemistry ; Biomedical materials ; Bone Cements - chemistry ; Calcium Phosphates - chemistry ; Carboxymethylcellulose Sodium - chemistry ; Compressive Strength ; Crystallization ; Elastic Modulus ; Humans ; Materials research ; Materials science ; Materials Testing ; Microscopy, Electron, Scanning ; Particle Size ; Plasma ; Polymerization ; Polymethyl Methacrylate - chemistry ; Porosity ; Solutions ; Temperature ; X-Ray Diffraction</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2015-04, Vol.103 (3), p.548-555</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-73f7987b7f3dc0dba68b9ffef0255ecadd20cf1e27754f357b1ca2729b21d8f23</citedby><cites>FETCH-LOGICAL-c387t-73f7987b7f3dc0dba68b9ffef0255ecadd20cf1e27754f357b1ca2729b21d8f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24953849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sa, Yue</creatorcontrib><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>Leeuwenburgh, Sander C G</creatorcontrib><creatorcontrib>Wolke, Joop G C</creatorcontrib><creatorcontrib>Ye, Guang</creatorcontrib><creatorcontrib>de Wijn, Joost R</creatorcontrib><creatorcontrib>Jansen, John A</creatorcontrib><creatorcontrib>Wang, Yining</creatorcontrib><title>Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>The main goal of this study was to evaluate the effects of incorporation of calcium phosphate (CaP) particles on the physicochemical properties and mineralization capacity of cements in vitro. Herein, two different types of CaP particles were loaded into polymethylmethacrylate (PMMA) cements exhibiting an interconnected porosity created by mixing with carboxymethylcellulose. The incorporation of CaP particles did not influence the maximum polymerization temperature of the porous PMMA, but reduced the porosity and the average pore size. Small CaP particles formed agglomerations within the PMMA pores, whereas big CaP particles were partially embedded in the PMMA matrix and partially exposed to the pores. Both types of CaP particles enhanced the mineralization capacity of PMMA cement without compromising their mechanical properties. The data presented herein suggest that porous PMMA/CaP cements hold strong promise for surgical application in bone reconstruction.</description><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical materials</subject><subject>Bone Cements - chemistry</subject><subject>Calcium Phosphates - chemistry</subject><subject>Carboxymethylcellulose Sodium - chemistry</subject><subject>Compressive Strength</subject><subject>Crystallization</subject><subject>Elastic Modulus</subject><subject>Humans</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>Particle Size</subject><subject>Plasma</subject><subject>Polymerization</subject><subject>Polymethyl Methacrylate - chemistry</subject><subject>Porosity</subject><subject>Solutions</subject><subject>Temperature</subject><subject>X-Ray Diffraction</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0U1rFTEUBuAgFlurK_cScFOQe50kN5OZpRSrhYIudD3k44TJJZmMSUaZ_gB_dzP2Y9FNThYPb3J4EXpHmj1pGvrpqMJe7RmjjL1AZ4Rzujv0HXn5dBfsFL3O-Vhx23D2Cp3SQ89Zd-jP0L8f45qdjnqE4LT0eE5xhlQcZCwng92E_7iSIg5ugiS9u5XFxQlHi-eY4pLr8GuAMq5-O6VOq5cFsIYAU8E-SgMG_3VlxDVeuyXgeYx5Hjc0y_qS9pDfoBMrfYa3D_Mc_br68vPy2-7m-9fry883O806UXaCWdF3QgnLjG6Mkm2nemvBNpRz0NIY2mhLgArBD5ZxoYiWVNBeUWI6S9k5urjPrWv-XiCXIbiswXs5QV1mIG0rGCeEb_TDM3qMS5rq7zbV0p6KdlMf75VOMecEdpiTCzKtA2mGrZ6h1jOo4X89Vb9_yFxUAPNkH_tgd4yMj6s</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Sa, Yue</creator><creator>Yang, Fang</creator><creator>Leeuwenburgh, Sander C G</creator><creator>Wolke, Joop G C</creator><creator>Ye, Guang</creator><creator>de Wijn, Joost R</creator><creator>Jansen, John A</creator><creator>Wang, Yining</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150401</creationdate><title>Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles</title><author>Sa, Yue ; Yang, Fang ; Leeuwenburgh, Sander C G ; Wolke, Joop G C ; Ye, Guang ; de Wijn, Joost R ; Jansen, John A ; Wang, Yining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-73f7987b7f3dc0dba68b9ffef0255ecadd20cf1e27754f357b1ca2729b21d8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical materials</topic><topic>Bone Cements - chemistry</topic><topic>Calcium Phosphates - chemistry</topic><topic>Carboxymethylcellulose Sodium - chemistry</topic><topic>Compressive Strength</topic><topic>Crystallization</topic><topic>Elastic Modulus</topic><topic>Humans</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>Particle Size</topic><topic>Plasma</topic><topic>Polymerization</topic><topic>Polymethyl Methacrylate - chemistry</topic><topic>Porosity</topic><topic>Solutions</topic><topic>Temperature</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sa, Yue</creatorcontrib><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>Leeuwenburgh, Sander C G</creatorcontrib><creatorcontrib>Wolke, Joop G C</creatorcontrib><creatorcontrib>Ye, Guang</creatorcontrib><creatorcontrib>de Wijn, Joost R</creatorcontrib><creatorcontrib>Jansen, John A</creatorcontrib><creatorcontrib>Wang, Yining</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sa, Yue</au><au>Yang, Fang</au><au>Leeuwenburgh, Sander C G</au><au>Wolke, Joop G C</au><au>Ye, Guang</au><au>de Wijn, Joost R</au><au>Jansen, John A</au><au>Wang, Yining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>103</volume><issue>3</issue><spage>548</spage><epage>555</epage><pages>548-555</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>The main goal of this study was to evaluate the effects of incorporation of calcium phosphate (CaP) particles on the physicochemical properties and mineralization capacity of cements in vitro. Herein, two different types of CaP particles were loaded into polymethylmethacrylate (PMMA) cements exhibiting an interconnected porosity created by mixing with carboxymethylcellulose. The incorporation of CaP particles did not influence the maximum polymerization temperature of the porous PMMA, but reduced the porosity and the average pore size. Small CaP particles formed agglomerations within the PMMA pores, whereas big CaP particles were partially embedded in the PMMA matrix and partially exposed to the pores. Both types of CaP particles enhanced the mineralization capacity of PMMA cement without compromising their mechanical properties. The data presented herein suggest that porous PMMA/CaP cements hold strong promise for surgical application in bone reconstruction.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>24953849</pmid><doi>10.1002/jbm.b.33233</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2015-04, Vol.103 (3), p.548-555
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_1667351152
source MEDLINE; Access via Wiley Online Library
subjects Biocompatible Materials - chemistry
Biomedical materials
Bone Cements - chemistry
Calcium Phosphates - chemistry
Carboxymethylcellulose Sodium - chemistry
Compressive Strength
Crystallization
Elastic Modulus
Humans
Materials research
Materials science
Materials Testing
Microscopy, Electron, Scanning
Particle Size
Plasma
Polymerization
Polymethyl Methacrylate - chemistry
Porosity
Solutions
Temperature
X-Ray Diffraction
title Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20properties%20and%20in%20vitro%20mineralization%20of%20porous%20polymethylmethacrylate%20cement%20loaded%20with%20calcium%20phosphate%20particles&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Sa,%20Yue&rft.date=2015-04-01&rft.volume=103&rft.issue=3&rft.spage=548&rft.epage=555&rft.pages=548-555&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.33233&rft_dat=%3Cproquest_cross%3E3634310281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666292762&rft_id=info:pmid/24953849&rfr_iscdi=true