Thioredoxin-2 Inhibits Mitochondrial Reactive Oxygen Species Generation and Apoptosis Stress Kinase-1 Activity to Maintain Cardiac Function
BACKGROUND—Thioredoxin 2 (Trx2) is a key mitochondrial protein that regulates cellular redox and survival by suppressing mitochondrial reactive oxygen species generation and by inhibiting apoptosis stress kinase-1 (ASK1)–dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 syst...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 2015-03, Vol.131 (12), p.1082-1097 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1097 |
---|---|
container_issue | 12 |
container_start_page | 1082 |
container_title | Circulation (New York, N.Y.) |
container_volume | 131 |
creator | Huang, Qunhua Zhou, Huanjiao Jenny Zhang, Haifeng Huang, Yan Hinojosa-Kirschenbaum, Ford Fan, Peidong Yao, Lina Belardinelli, Luiz Tellides, George Giordano, Frank J Budas, Grant R Min, Wang |
description | BACKGROUND—Thioredoxin 2 (Trx2) is a key mitochondrial protein that regulates cellular redox and survival by suppressing mitochondrial reactive oxygen species generation and by inhibiting apoptosis stress kinase-1 (ASK1)–dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated.
METHODS AND RESULTS—Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy, with a concomitant increase in ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice develop spontaneous dilated cardiomyopathy at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular contractile function, resulting in mortality due to heart failure by ≈4 months of age. The progressive decline in cardiac function observed in cardiac-specific Trx2 knockout mice was accompanied by the disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial reactive oxygen species generation, and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive left ventricular remodeling with significant reductions in oxidative stress, apoptosis, fibrosis, and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial reactive oxygen species generation.
CONCLUSIONS—Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial reactive oxygen species production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure. |
doi_str_mv | 10.1161/CIRCULATIONAHA.114.012725 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1666726866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1666726866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5445-84ba92d481aebd8ac1cdb320a28c52202150903ead37ffe8d7c16ff95bc64fa83</originalsourceid><addsrcrecordid>eNqNUU1v1DAQtRCILoW_gMyNS4rt2E5y4BBFtF2xZaV2e44ce0IMWTvYDu3-Bv40WW1B4sZhNJqn9yHNQ-gdJReUSvqhWd8295t6t95-qa_rBeMXhLKCiWdoRQXjGRd59RytCCFVVuSMnaFXMX5bTpkX4iU6Y0KyMq_ICv3aDdYHMP7RuozhtRtsZ1PENzZ5PXhnglUjvgWlk_0JePt4-AoO302gLUR8BQ6CStY7rJzB9eSn5KON-C4FiBF_tk5FyCiuj3KbDjh5fKOsS8vgRgVjlcaXs9NHj9foRa_GCG-e9jm6v_y0a66zzfZq3dSbTAvORVbyTlXM8JIq6EypNNWmyxlRrNSCMcKoIBXJQZm86HsoTaGp7PtKdFryXpX5OXp_8p2C_zFDTO3eRg3jqBz4ObZUSlkwWUq5UKsTVQcfY4C-nYLdq3BoKWmPXbT_drFgvD11sWjfPsXM3R7MX-Wf5y-EjyfCgx8ThPh9nB8gtAOoMQ3_EfAbenecsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666726866</pqid></control><display><type>article</type><title>Thioredoxin-2 Inhibits Mitochondrial Reactive Oxygen Species Generation and Apoptosis Stress Kinase-1 Activity to Maintain Cardiac Function</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Journals@Ovid Complete</source><creator>Huang, Qunhua ; Zhou, Huanjiao Jenny ; Zhang, Haifeng ; Huang, Yan ; Hinojosa-Kirschenbaum, Ford ; Fan, Peidong ; Yao, Lina ; Belardinelli, Luiz ; Tellides, George ; Giordano, Frank J ; Budas, Grant R ; Min, Wang</creator><creatorcontrib>Huang, Qunhua ; Zhou, Huanjiao Jenny ; Zhang, Haifeng ; Huang, Yan ; Hinojosa-Kirschenbaum, Ford ; Fan, Peidong ; Yao, Lina ; Belardinelli, Luiz ; Tellides, George ; Giordano, Frank J ; Budas, Grant R ; Min, Wang</creatorcontrib><description>BACKGROUND—Thioredoxin 2 (Trx2) is a key mitochondrial protein that regulates cellular redox and survival by suppressing mitochondrial reactive oxygen species generation and by inhibiting apoptosis stress kinase-1 (ASK1)–dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated.
METHODS AND RESULTS—Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy, with a concomitant increase in ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice develop spontaneous dilated cardiomyopathy at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular contractile function, resulting in mortality due to heart failure by ≈4 months of age. The progressive decline in cardiac function observed in cardiac-specific Trx2 knockout mice was accompanied by the disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial reactive oxygen species generation, and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive left ventricular remodeling with significant reductions in oxidative stress, apoptosis, fibrosis, and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial reactive oxygen species generation.
CONCLUSIONS—Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial reactive oxygen species production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/CIRCULATIONAHA.114.012725</identifier><identifier>PMID: 25628390</identifier><language>eng</language><publisher>United States: by the American College of Cardiology Foundation and the American Heart Association, Inc</publisher><subject>Animals ; Cardiomegaly - metabolism ; Cardiomegaly - physiopathology ; Cells, Cultured ; Humans ; MAP Kinase Kinase Kinase 5 - biosynthesis ; Mice ; Mice, Knockout ; Mitochondria, Heart - metabolism ; Reactive Oxygen Species - metabolism ; Thioredoxins - biosynthesis</subject><ispartof>Circulation (New York, N.Y.), 2015-03, Vol.131 (12), p.1082-1097</ispartof><rights>2015 by the American College of Cardiology Foundation and the American Heart Association, Inc.</rights><rights>2015 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5445-84ba92d481aebd8ac1cdb320a28c52202150903ead37ffe8d7c16ff95bc64fa83</citedby><cites>FETCH-LOGICAL-c5445-84ba92d481aebd8ac1cdb320a28c52202150903ead37ffe8d7c16ff95bc64fa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25628390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Qunhua</creatorcontrib><creatorcontrib>Zhou, Huanjiao Jenny</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Hinojosa-Kirschenbaum, Ford</creatorcontrib><creatorcontrib>Fan, Peidong</creatorcontrib><creatorcontrib>Yao, Lina</creatorcontrib><creatorcontrib>Belardinelli, Luiz</creatorcontrib><creatorcontrib>Tellides, George</creatorcontrib><creatorcontrib>Giordano, Frank J</creatorcontrib><creatorcontrib>Budas, Grant R</creatorcontrib><creatorcontrib>Min, Wang</creatorcontrib><title>Thioredoxin-2 Inhibits Mitochondrial Reactive Oxygen Species Generation and Apoptosis Stress Kinase-1 Activity to Maintain Cardiac Function</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>BACKGROUND—Thioredoxin 2 (Trx2) is a key mitochondrial protein that regulates cellular redox and survival by suppressing mitochondrial reactive oxygen species generation and by inhibiting apoptosis stress kinase-1 (ASK1)–dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated.
METHODS AND RESULTS—Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy, with a concomitant increase in ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice develop spontaneous dilated cardiomyopathy at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular contractile function, resulting in mortality due to heart failure by ≈4 months of age. The progressive decline in cardiac function observed in cardiac-specific Trx2 knockout mice was accompanied by the disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial reactive oxygen species generation, and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive left ventricular remodeling with significant reductions in oxidative stress, apoptosis, fibrosis, and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial reactive oxygen species generation.
CONCLUSIONS—Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial reactive oxygen species production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure.</description><subject>Animals</subject><subject>Cardiomegaly - metabolism</subject><subject>Cardiomegaly - physiopathology</subject><subject>Cells, Cultured</subject><subject>Humans</subject><subject>MAP Kinase Kinase Kinase 5 - biosynthesis</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Thioredoxins - biosynthesis</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1v1DAQtRCILoW_gMyNS4rt2E5y4BBFtF2xZaV2e44ce0IMWTvYDu3-Bv40WW1B4sZhNJqn9yHNQ-gdJReUSvqhWd8295t6t95-qa_rBeMXhLKCiWdoRQXjGRd59RytCCFVVuSMnaFXMX5bTpkX4iU6Y0KyMq_ICv3aDdYHMP7RuozhtRtsZ1PENzZ5PXhnglUjvgWlk_0JePt4-AoO302gLUR8BQ6CStY7rJzB9eSn5KON-C4FiBF_tk5FyCiuj3KbDjh5fKOsS8vgRgVjlcaXs9NHj9foRa_GCG-e9jm6v_y0a66zzfZq3dSbTAvORVbyTlXM8JIq6EypNNWmyxlRrNSCMcKoIBXJQZm86HsoTaGp7PtKdFryXpX5OXp_8p2C_zFDTO3eRg3jqBz4ObZUSlkwWUq5UKsTVQcfY4C-nYLdq3BoKWmPXbT_drFgvD11sWjfPsXM3R7MX-Wf5y-EjyfCgx8ThPh9nB8gtAOoMQ3_EfAbenecsg</recordid><startdate>20150324</startdate><enddate>20150324</enddate><creator>Huang, Qunhua</creator><creator>Zhou, Huanjiao Jenny</creator><creator>Zhang, Haifeng</creator><creator>Huang, Yan</creator><creator>Hinojosa-Kirschenbaum, Ford</creator><creator>Fan, Peidong</creator><creator>Yao, Lina</creator><creator>Belardinelli, Luiz</creator><creator>Tellides, George</creator><creator>Giordano, Frank J</creator><creator>Budas, Grant R</creator><creator>Min, Wang</creator><general>by the American College of Cardiology Foundation and the American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150324</creationdate><title>Thioredoxin-2 Inhibits Mitochondrial Reactive Oxygen Species Generation and Apoptosis Stress Kinase-1 Activity to Maintain Cardiac Function</title><author>Huang, Qunhua ; Zhou, Huanjiao Jenny ; Zhang, Haifeng ; Huang, Yan ; Hinojosa-Kirschenbaum, Ford ; Fan, Peidong ; Yao, Lina ; Belardinelli, Luiz ; Tellides, George ; Giordano, Frank J ; Budas, Grant R ; Min, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5445-84ba92d481aebd8ac1cdb320a28c52202150903ead37ffe8d7c16ff95bc64fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cardiomegaly - metabolism</topic><topic>Cardiomegaly - physiopathology</topic><topic>Cells, Cultured</topic><topic>Humans</topic><topic>MAP Kinase Kinase Kinase 5 - biosynthesis</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Thioredoxins - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qunhua</creatorcontrib><creatorcontrib>Zhou, Huanjiao Jenny</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Hinojosa-Kirschenbaum, Ford</creatorcontrib><creatorcontrib>Fan, Peidong</creatorcontrib><creatorcontrib>Yao, Lina</creatorcontrib><creatorcontrib>Belardinelli, Luiz</creatorcontrib><creatorcontrib>Tellides, George</creatorcontrib><creatorcontrib>Giordano, Frank J</creatorcontrib><creatorcontrib>Budas, Grant R</creatorcontrib><creatorcontrib>Min, Wang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qunhua</au><au>Zhou, Huanjiao Jenny</au><au>Zhang, Haifeng</au><au>Huang, Yan</au><au>Hinojosa-Kirschenbaum, Ford</au><au>Fan, Peidong</au><au>Yao, Lina</au><au>Belardinelli, Luiz</au><au>Tellides, George</au><au>Giordano, Frank J</au><au>Budas, Grant R</au><au>Min, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thioredoxin-2 Inhibits Mitochondrial Reactive Oxygen Species Generation and Apoptosis Stress Kinase-1 Activity to Maintain Cardiac Function</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>2015-03-24</date><risdate>2015</risdate><volume>131</volume><issue>12</issue><spage>1082</spage><epage>1097</epage><pages>1082-1097</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>BACKGROUND—Thioredoxin 2 (Trx2) is a key mitochondrial protein that regulates cellular redox and survival by suppressing mitochondrial reactive oxygen species generation and by inhibiting apoptosis stress kinase-1 (ASK1)–dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated.
METHODS AND RESULTS—Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy, with a concomitant increase in ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice develop spontaneous dilated cardiomyopathy at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular contractile function, resulting in mortality due to heart failure by ≈4 months of age. The progressive decline in cardiac function observed in cardiac-specific Trx2 knockout mice was accompanied by the disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial reactive oxygen species generation, and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive left ventricular remodeling with significant reductions in oxidative stress, apoptosis, fibrosis, and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial reactive oxygen species generation.
CONCLUSIONS—Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial reactive oxygen species production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure.</abstract><cop>United States</cop><pub>by the American College of Cardiology Foundation and the American Heart Association, Inc</pub><pmid>25628390</pmid><doi>10.1161/CIRCULATIONAHA.114.012725</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7322 |
ispartof | Circulation (New York, N.Y.), 2015-03, Vol.131 (12), p.1082-1097 |
issn | 0009-7322 1524-4539 |
language | eng |
recordid | cdi_proquest_miscellaneous_1666726866 |
source | MEDLINE; American Heart Association Journals; EZB-FREE-00999 freely available EZB journals; Journals@Ovid Complete |
subjects | Animals Cardiomegaly - metabolism Cardiomegaly - physiopathology Cells, Cultured Humans MAP Kinase Kinase Kinase 5 - biosynthesis Mice Mice, Knockout Mitochondria, Heart - metabolism Reactive Oxygen Species - metabolism Thioredoxins - biosynthesis |
title | Thioredoxin-2 Inhibits Mitochondrial Reactive Oxygen Species Generation and Apoptosis Stress Kinase-1 Activity to Maintain Cardiac Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thioredoxin-2%20Inhibits%20Mitochondrial%20Reactive%20Oxygen%20Species%20Generation%20and%20Apoptosis%20Stress%20Kinase-1%20Activity%20to%20Maintain%20Cardiac%20Function&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Huang,%20Qunhua&rft.date=2015-03-24&rft.volume=131&rft.issue=12&rft.spage=1082&rft.epage=1097&rft.pages=1082-1097&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/CIRCULATIONAHA.114.012725&rft_dat=%3Cproquest_cross%3E1666726866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666726866&rft_id=info:pmid/25628390&rfr_iscdi=true |