X-ray analysis of substrate analogs in the ricin A-chain active site
Ricin A-chain is an N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 an...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 1992-10, Vol.227 (4), p.1136-1145 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1145 |
---|---|
container_issue | 4 |
container_start_page | 1136 |
container_title | Journal of molecular biology |
container_volume | 227 |
creator | Monzingo, Arthur F. Robertus, Jon D. |
description | Ricin A-chain is an
N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 and 123 and at least four hydrogen bonds are made to the adenine moiety. A residue invariant in this enzyme class, Arg180, appears to hydrogen bond to N-3 of the susceptible adenine. Three hypothetical models for binding a true hexanucleotide substrate, CGAGAG, are proposed. They incorporate adenine binding, shown by crystallography, but also include geometry likely to favor catalysis. For example, efforts have been made to orient the ribose ring in a way that allows solvent attack and oxycarbonium stabilization by the enzyme. The favored model is a simple perturbation of the tetraloop structure determined by nuclear magnetic resonance for similar polynucleotides. The model is attractive in that specific roles are defined for conserved protein residues. A mechanism of action is proposed. It invokes oxycarbonium ion stabilization on ribose by Glu177 in the transition state. Arg180 stabilizes anion development on the leaving adenine by protonation at N-3 and may activate a trapped water molecule that is the ultimate nucleophile in the depurination. |
doi_str_mv | 10.1016/0022-2836(92)90526-P |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16649738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002228369290526P</els_id><sourcerecordid>16649738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-a93fdcf6a0ea6b21bdca657509cf6da4696fc9a69b2eb22ea12ee23892efd5833</originalsourceid><addsrcrecordid>eNp9kE1LHEEQhptg0FXzDyKZQwjJYWJ_zPR2XwTRmAhCBBVya2p6qrXD7MzaNSvsv7fXWfTmqYp6nyqKh7HPgv8UXOhjzqUspVH6u5U_LK-lLq8_sJngxpZGK7PDZq_IHtsn-s85r1VldtmuqJSSls_Y-b8ywbqAHro1RSqGUNCqoTHBiC_T4Z6K2BfjAxYp-tydlv4BcgU_xicsKI54yD4G6Ag_besBu7v4dXv2p7z6-_vy7PSq9HVtxhKsCq0PGjiCbqRoWg-6ntfc5mELlbY6eAvaNhIbKRGERJTKWImhrY1SB-zbdHeZhscV0ugWkTx2HfQ4rMgJrSs7VyaD1QT6NBAlDG6Z4gLS2gnuNvLcxozbmHFWuhd57jqvHW3vr5oFtm9Lk62cf93mQB66kKD3kV6xStlsV2Tsy4QFGBzcp4zc3UguFBdzXQu1IU4mArOtp4jJkY_Ye2xjQj-6dojvf_oMd1qT2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16649738</pqid></control><display><type>article</type><title>X-ray analysis of substrate analogs in the ricin A-chain active site</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Monzingo, Arthur F. ; Robertus, Jon D.</creator><creatorcontrib>Monzingo, Arthur F. ; Robertus, Jon D.</creatorcontrib><description>Ricin A-chain is an
N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 and 123 and at least four hydrogen bonds are made to the adenine moiety. A residue invariant in this enzyme class, Arg180, appears to hydrogen bond to N-3 of the susceptible adenine. Three hypothetical models for binding a true hexanucleotide substrate, CGAGAG, are proposed. They incorporate adenine binding, shown by crystallography, but also include geometry likely to favor catalysis. For example, efforts have been made to orient the ribose ring in a way that allows solvent attack and oxycarbonium stabilization by the enzyme. The favored model is a simple perturbation of the tetraloop structure determined by nuclear magnetic resonance for similar polynucleotides. The model is attractive in that specific roles are defined for conserved protein residues. A mechanism of action is proposed. It invokes oxycarbonium ion stabilization on ribose by Glu177 in the transition state. Arg180 stabilizes anion development on the leaving adenine by protonation at N-3 and may activate a trapped water molecule that is the ultimate nucleophile in the depurination.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/0022-2836(92)90526-P</identifier><identifier>PMID: 1433290</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A chain ; active sites ; Adenosine - chemistry ; Adenosine - metabolism ; adenylguanosine ; analogs ; Analytical, structural and metabolic biochemistry ; Binding Sites ; Biological and medical sciences ; enzyme activity ; Enzymes and enzyme inhibitors ; formycin ; Formycins - chemistry ; Formycins - metabolism ; Fundamental and applied biological sciences. Psychology ; glycosidases ; Guanosine - chemistry ; Guanosine - metabolism ; guanyladenosine ; Hydrolases ; mechanism of action ; molecular conformation ; Molecular Structure ; N-glycosidase ; nucleotides ; Ribonucleotides - chemistry ; Ribonucleotides - metabolism ; ricin ; Ricin - chemistry ; Ricin - metabolism ; Ricinus communis ; substrate analogs ; Substrate Specificity ; substrates ; X-Ray Diffraction ; X-ray structure</subject><ispartof>Journal of molecular biology, 1992-10, Vol.227 (4), p.1136-1145</ispartof><rights>1992</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-a93fdcf6a0ea6b21bdca657509cf6da4696fc9a69b2eb22ea12ee23892efd5833</citedby><cites>FETCH-LOGICAL-c558t-a93fdcf6a0ea6b21bdca657509cf6da4696fc9a69b2eb22ea12ee23892efd5833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/002228369290526P$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4393481$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1433290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monzingo, Arthur F.</creatorcontrib><creatorcontrib>Robertus, Jon D.</creatorcontrib><title>X-ray analysis of substrate analogs in the ricin A-chain active site</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Ricin A-chain is an
N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 and 123 and at least four hydrogen bonds are made to the adenine moiety. A residue invariant in this enzyme class, Arg180, appears to hydrogen bond to N-3 of the susceptible adenine. Three hypothetical models for binding a true hexanucleotide substrate, CGAGAG, are proposed. They incorporate adenine binding, shown by crystallography, but also include geometry likely to favor catalysis. For example, efforts have been made to orient the ribose ring in a way that allows solvent attack and oxycarbonium stabilization by the enzyme. The favored model is a simple perturbation of the tetraloop structure determined by nuclear magnetic resonance for similar polynucleotides. The model is attractive in that specific roles are defined for conserved protein residues. A mechanism of action is proposed. It invokes oxycarbonium ion stabilization on ribose by Glu177 in the transition state. Arg180 stabilizes anion development on the leaving adenine by protonation at N-3 and may activate a trapped water molecule that is the ultimate nucleophile in the depurination.</description><subject>A chain</subject><subject>active sites</subject><subject>Adenosine - chemistry</subject><subject>Adenosine - metabolism</subject><subject>adenylguanosine</subject><subject>analogs</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>enzyme activity</subject><subject>Enzymes and enzyme inhibitors</subject><subject>formycin</subject><subject>Formycins - chemistry</subject><subject>Formycins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glycosidases</subject><subject>Guanosine - chemistry</subject><subject>Guanosine - metabolism</subject><subject>guanyladenosine</subject><subject>Hydrolases</subject><subject>mechanism of action</subject><subject>molecular conformation</subject><subject>Molecular Structure</subject><subject>N-glycosidase</subject><subject>nucleotides</subject><subject>Ribonucleotides - chemistry</subject><subject>Ribonucleotides - metabolism</subject><subject>ricin</subject><subject>Ricin - chemistry</subject><subject>Ricin - metabolism</subject><subject>Ricinus communis</subject><subject>substrate analogs</subject><subject>Substrate Specificity</subject><subject>substrates</subject><subject>X-Ray Diffraction</subject><subject>X-ray structure</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LHEEQhptg0FXzDyKZQwjJYWJ_zPR2XwTRmAhCBBVya2p6qrXD7MzaNSvsv7fXWfTmqYp6nyqKh7HPgv8UXOhjzqUspVH6u5U_LK-lLq8_sJngxpZGK7PDZq_IHtsn-s85r1VldtmuqJSSls_Y-b8ywbqAHro1RSqGUNCqoTHBiC_T4Z6K2BfjAxYp-tydlv4BcgU_xicsKI54yD4G6Ag_besBu7v4dXv2p7z6-_vy7PSq9HVtxhKsCq0PGjiCbqRoWg-6ntfc5mELlbY6eAvaNhIbKRGERJTKWImhrY1SB-zbdHeZhscV0ugWkTx2HfQ4rMgJrSs7VyaD1QT6NBAlDG6Z4gLS2gnuNvLcxozbmHFWuhd57jqvHW3vr5oFtm9Lk62cf93mQB66kKD3kV6xStlsV2Tsy4QFGBzcp4zc3UguFBdzXQu1IU4mArOtp4jJkY_Ye2xjQj-6dojvf_oMd1qT2w</recordid><startdate>19921020</startdate><enddate>19921020</enddate><creator>Monzingo, Arthur F.</creator><creator>Robertus, Jon D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope></search><sort><creationdate>19921020</creationdate><title>X-ray analysis of substrate analogs in the ricin A-chain active site</title><author>Monzingo, Arthur F. ; Robertus, Jon D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-a93fdcf6a0ea6b21bdca657509cf6da4696fc9a69b2eb22ea12ee23892efd5833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>A chain</topic><topic>active sites</topic><topic>Adenosine - chemistry</topic><topic>Adenosine - metabolism</topic><topic>adenylguanosine</topic><topic>analogs</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>enzyme activity</topic><topic>Enzymes and enzyme inhibitors</topic><topic>formycin</topic><topic>Formycins - chemistry</topic><topic>Formycins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glycosidases</topic><topic>Guanosine - chemistry</topic><topic>Guanosine - metabolism</topic><topic>guanyladenosine</topic><topic>Hydrolases</topic><topic>mechanism of action</topic><topic>molecular conformation</topic><topic>Molecular Structure</topic><topic>N-glycosidase</topic><topic>nucleotides</topic><topic>Ribonucleotides - chemistry</topic><topic>Ribonucleotides - metabolism</topic><topic>ricin</topic><topic>Ricin - chemistry</topic><topic>Ricin - metabolism</topic><topic>Ricinus communis</topic><topic>substrate analogs</topic><topic>Substrate Specificity</topic><topic>substrates</topic><topic>X-Ray Diffraction</topic><topic>X-ray structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monzingo, Arthur F.</creatorcontrib><creatorcontrib>Robertus, Jon D.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monzingo, Arthur F.</au><au>Robertus, Jon D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray analysis of substrate analogs in the ricin A-chain active site</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1992-10-20</date><risdate>1992</risdate><volume>227</volume><issue>4</issue><spage>1136</spage><epage>1145</epage><pages>1136-1145</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>Ricin A-chain is an
N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 and 123 and at least four hydrogen bonds are made to the adenine moiety. A residue invariant in this enzyme class, Arg180, appears to hydrogen bond to N-3 of the susceptible adenine. Three hypothetical models for binding a true hexanucleotide substrate, CGAGAG, are proposed. They incorporate adenine binding, shown by crystallography, but also include geometry likely to favor catalysis. For example, efforts have been made to orient the ribose ring in a way that allows solvent attack and oxycarbonium stabilization by the enzyme. The favored model is a simple perturbation of the tetraloop structure determined by nuclear magnetic resonance for similar polynucleotides. The model is attractive in that specific roles are defined for conserved protein residues. A mechanism of action is proposed. It invokes oxycarbonium ion stabilization on ribose by Glu177 in the transition state. Arg180 stabilizes anion development on the leaving adenine by protonation at N-3 and may activate a trapped water molecule that is the ultimate nucleophile in the depurination.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>1433290</pmid><doi>10.1016/0022-2836(92)90526-P</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 1992-10, Vol.227 (4), p.1136-1145 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_16649738 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | A chain active sites Adenosine - chemistry Adenosine - metabolism adenylguanosine analogs Analytical, structural and metabolic biochemistry Binding Sites Biological and medical sciences enzyme activity Enzymes and enzyme inhibitors formycin Formycins - chemistry Formycins - metabolism Fundamental and applied biological sciences. Psychology glycosidases Guanosine - chemistry Guanosine - metabolism guanyladenosine Hydrolases mechanism of action molecular conformation Molecular Structure N-glycosidase nucleotides Ribonucleotides - chemistry Ribonucleotides - metabolism ricin Ricin - chemistry Ricin - metabolism Ricinus communis substrate analogs Substrate Specificity substrates X-Ray Diffraction X-ray structure |
title | X-ray analysis of substrate analogs in the ricin A-chain active site |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20analysis%20of%20substrate%20analogs%20in%20the%20ricin%20A-chain%20active%20site&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Monzingo,%20Arthur%20F.&rft.date=1992-10-20&rft.volume=227&rft.issue=4&rft.spage=1136&rft.epage=1145&rft.pages=1136-1145&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1016/0022-2836(92)90526-P&rft_dat=%3Cproquest_cross%3E16649738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16649738&rft_id=info:pmid/1433290&rft_els_id=002228369290526P&rfr_iscdi=true |