X-ray analysis of substrate analogs in the ricin A-chain active site

Ricin A-chain is an N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1992-10, Vol.227 (4), p.1136-1145
Hauptverfasser: Monzingo, Arthur F., Robertus, Jon D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1145
container_issue 4
container_start_page 1136
container_title Journal of molecular biology
container_volume 227
creator Monzingo, Arthur F.
Robertus, Jon D.
description Ricin A-chain is an N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 and 123 and at least four hydrogen bonds are made to the adenine moiety. A residue invariant in this enzyme class, Arg180, appears to hydrogen bond to N-3 of the susceptible adenine. Three hypothetical models for binding a true hexanucleotide substrate, CGAGAG, are proposed. They incorporate adenine binding, shown by crystallography, but also include geometry likely to favor catalysis. For example, efforts have been made to orient the ribose ring in a way that allows solvent attack and oxycarbonium stabilization by the enzyme. The favored model is a simple perturbation of the tetraloop structure determined by nuclear magnetic resonance for similar polynucleotides. The model is attractive in that specific roles are defined for conserved protein residues. A mechanism of action is proposed. It invokes oxycarbonium ion stabilization on ribose by Glu177 in the transition state. Arg180 stabilizes anion development on the leaving adenine by protonation at N-3 and may activate a trapped water molecule that is the ultimate nucleophile in the depurination.
doi_str_mv 10.1016/0022-2836(92)90526-P
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16649738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002228369290526P</els_id><sourcerecordid>16649738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-a93fdcf6a0ea6b21bdca657509cf6da4696fc9a69b2eb22ea12ee23892efd5833</originalsourceid><addsrcrecordid>eNp9kE1LHEEQhptg0FXzDyKZQwjJYWJ_zPR2XwTRmAhCBBVya2p6qrXD7MzaNSvsv7fXWfTmqYp6nyqKh7HPgv8UXOhjzqUspVH6u5U_LK-lLq8_sJngxpZGK7PDZq_IHtsn-s85r1VldtmuqJSSls_Y-b8ywbqAHro1RSqGUNCqoTHBiC_T4Z6K2BfjAxYp-tydlv4BcgU_xicsKI54yD4G6Ag_besBu7v4dXv2p7z6-_vy7PSq9HVtxhKsCq0PGjiCbqRoWg-6ntfc5mELlbY6eAvaNhIbKRGERJTKWImhrY1SB-zbdHeZhscV0ugWkTx2HfQ4rMgJrSs7VyaD1QT6NBAlDG6Z4gLS2gnuNvLcxozbmHFWuhd57jqvHW3vr5oFtm9Lk62cf93mQB66kKD3kV6xStlsV2Tsy4QFGBzcp4zc3UguFBdzXQu1IU4mArOtp4jJkY_Ye2xjQj-6dojvf_oMd1qT2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16649738</pqid></control><display><type>article</type><title>X-ray analysis of substrate analogs in the ricin A-chain active site</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Monzingo, Arthur F. ; Robertus, Jon D.</creator><creatorcontrib>Monzingo, Arthur F. ; Robertus, Jon D.</creatorcontrib><description>Ricin A-chain is an N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 and 123 and at least four hydrogen bonds are made to the adenine moiety. A residue invariant in this enzyme class, Arg180, appears to hydrogen bond to N-3 of the susceptible adenine. Three hypothetical models for binding a true hexanucleotide substrate, CGAGAG, are proposed. They incorporate adenine binding, shown by crystallography, but also include geometry likely to favor catalysis. For example, efforts have been made to orient the ribose ring in a way that allows solvent attack and oxycarbonium stabilization by the enzyme. The favored model is a simple perturbation of the tetraloop structure determined by nuclear magnetic resonance for similar polynucleotides. The model is attractive in that specific roles are defined for conserved protein residues. A mechanism of action is proposed. It invokes oxycarbonium ion stabilization on ribose by Glu177 in the transition state. Arg180 stabilizes anion development on the leaving adenine by protonation at N-3 and may activate a trapped water molecule that is the ultimate nucleophile in the depurination.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/0022-2836(92)90526-P</identifier><identifier>PMID: 1433290</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A chain ; active sites ; Adenosine - chemistry ; Adenosine - metabolism ; adenylguanosine ; analogs ; Analytical, structural and metabolic biochemistry ; Binding Sites ; Biological and medical sciences ; enzyme activity ; Enzymes and enzyme inhibitors ; formycin ; Formycins - chemistry ; Formycins - metabolism ; Fundamental and applied biological sciences. Psychology ; glycosidases ; Guanosine - chemistry ; Guanosine - metabolism ; guanyladenosine ; Hydrolases ; mechanism of action ; molecular conformation ; Molecular Structure ; N-glycosidase ; nucleotides ; Ribonucleotides - chemistry ; Ribonucleotides - metabolism ; ricin ; Ricin - chemistry ; Ricin - metabolism ; Ricinus communis ; substrate analogs ; Substrate Specificity ; substrates ; X-Ray Diffraction ; X-ray structure</subject><ispartof>Journal of molecular biology, 1992-10, Vol.227 (4), p.1136-1145</ispartof><rights>1992</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-a93fdcf6a0ea6b21bdca657509cf6da4696fc9a69b2eb22ea12ee23892efd5833</citedby><cites>FETCH-LOGICAL-c558t-a93fdcf6a0ea6b21bdca657509cf6da4696fc9a69b2eb22ea12ee23892efd5833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/002228369290526P$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4393481$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1433290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monzingo, Arthur F.</creatorcontrib><creatorcontrib>Robertus, Jon D.</creatorcontrib><title>X-ray analysis of substrate analogs in the ricin A-chain active site</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Ricin A-chain is an N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 and 123 and at least four hydrogen bonds are made to the adenine moiety. A residue invariant in this enzyme class, Arg180, appears to hydrogen bond to N-3 of the susceptible adenine. Three hypothetical models for binding a true hexanucleotide substrate, CGAGAG, are proposed. They incorporate adenine binding, shown by crystallography, but also include geometry likely to favor catalysis. For example, efforts have been made to orient the ribose ring in a way that allows solvent attack and oxycarbonium stabilization by the enzyme. The favored model is a simple perturbation of the tetraloop structure determined by nuclear magnetic resonance for similar polynucleotides. The model is attractive in that specific roles are defined for conserved protein residues. A mechanism of action is proposed. It invokes oxycarbonium ion stabilization on ribose by Glu177 in the transition state. Arg180 stabilizes anion development on the leaving adenine by protonation at N-3 and may activate a trapped water molecule that is the ultimate nucleophile in the depurination.</description><subject>A chain</subject><subject>active sites</subject><subject>Adenosine - chemistry</subject><subject>Adenosine - metabolism</subject><subject>adenylguanosine</subject><subject>analogs</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>enzyme activity</subject><subject>Enzymes and enzyme inhibitors</subject><subject>formycin</subject><subject>Formycins - chemistry</subject><subject>Formycins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glycosidases</subject><subject>Guanosine - chemistry</subject><subject>Guanosine - metabolism</subject><subject>guanyladenosine</subject><subject>Hydrolases</subject><subject>mechanism of action</subject><subject>molecular conformation</subject><subject>Molecular Structure</subject><subject>N-glycosidase</subject><subject>nucleotides</subject><subject>Ribonucleotides - chemistry</subject><subject>Ribonucleotides - metabolism</subject><subject>ricin</subject><subject>Ricin - chemistry</subject><subject>Ricin - metabolism</subject><subject>Ricinus communis</subject><subject>substrate analogs</subject><subject>Substrate Specificity</subject><subject>substrates</subject><subject>X-Ray Diffraction</subject><subject>X-ray structure</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LHEEQhptg0FXzDyKZQwjJYWJ_zPR2XwTRmAhCBBVya2p6qrXD7MzaNSvsv7fXWfTmqYp6nyqKh7HPgv8UXOhjzqUspVH6u5U_LK-lLq8_sJngxpZGK7PDZq_IHtsn-s85r1VldtmuqJSSls_Y-b8ywbqAHro1RSqGUNCqoTHBiC_T4Z6K2BfjAxYp-tydlv4BcgU_xicsKI54yD4G6Ag_besBu7v4dXv2p7z6-_vy7PSq9HVtxhKsCq0PGjiCbqRoWg-6ntfc5mELlbY6eAvaNhIbKRGERJTKWImhrY1SB-zbdHeZhscV0ugWkTx2HfQ4rMgJrSs7VyaD1QT6NBAlDG6Z4gLS2gnuNvLcxozbmHFWuhd57jqvHW3vr5oFtm9Lk62cf93mQB66kKD3kV6xStlsV2Tsy4QFGBzcp4zc3UguFBdzXQu1IU4mArOtp4jJkY_Ye2xjQj-6dojvf_oMd1qT2w</recordid><startdate>19921020</startdate><enddate>19921020</enddate><creator>Monzingo, Arthur F.</creator><creator>Robertus, Jon D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope></search><sort><creationdate>19921020</creationdate><title>X-ray analysis of substrate analogs in the ricin A-chain active site</title><author>Monzingo, Arthur F. ; Robertus, Jon D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-a93fdcf6a0ea6b21bdca657509cf6da4696fc9a69b2eb22ea12ee23892efd5833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>A chain</topic><topic>active sites</topic><topic>Adenosine - chemistry</topic><topic>Adenosine - metabolism</topic><topic>adenylguanosine</topic><topic>analogs</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>enzyme activity</topic><topic>Enzymes and enzyme inhibitors</topic><topic>formycin</topic><topic>Formycins - chemistry</topic><topic>Formycins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glycosidases</topic><topic>Guanosine - chemistry</topic><topic>Guanosine - metabolism</topic><topic>guanyladenosine</topic><topic>Hydrolases</topic><topic>mechanism of action</topic><topic>molecular conformation</topic><topic>Molecular Structure</topic><topic>N-glycosidase</topic><topic>nucleotides</topic><topic>Ribonucleotides - chemistry</topic><topic>Ribonucleotides - metabolism</topic><topic>ricin</topic><topic>Ricin - chemistry</topic><topic>Ricin - metabolism</topic><topic>Ricinus communis</topic><topic>substrate analogs</topic><topic>Substrate Specificity</topic><topic>substrates</topic><topic>X-Ray Diffraction</topic><topic>X-ray structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monzingo, Arthur F.</creatorcontrib><creatorcontrib>Robertus, Jon D.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monzingo, Arthur F.</au><au>Robertus, Jon D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray analysis of substrate analogs in the ricin A-chain active site</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1992-10-20</date><risdate>1992</risdate><volume>227</volume><issue>4</issue><spage>1136</spage><epage>1145</epage><pages>1136-1145</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>Ricin A-chain is an N-glycosidase that hydrolyzes the adenine ring from a specific adenosine of rRNA. Formycin monophosphate (FMP) and adenyl(3′ → 5′)guanosine (ApG) were bound to ricin A-chain and their structures elucidated by X-ray crystallography. The formycin ring stacks between tyrosines 80 and 123 and at least four hydrogen bonds are made to the adenine moiety. A residue invariant in this enzyme class, Arg180, appears to hydrogen bond to N-3 of the susceptible adenine. Three hypothetical models for binding a true hexanucleotide substrate, CGAGAG, are proposed. They incorporate adenine binding, shown by crystallography, but also include geometry likely to favor catalysis. For example, efforts have been made to orient the ribose ring in a way that allows solvent attack and oxycarbonium stabilization by the enzyme. The favored model is a simple perturbation of the tetraloop structure determined by nuclear magnetic resonance for similar polynucleotides. The model is attractive in that specific roles are defined for conserved protein residues. A mechanism of action is proposed. It invokes oxycarbonium ion stabilization on ribose by Glu177 in the transition state. Arg180 stabilizes anion development on the leaving adenine by protonation at N-3 and may activate a trapped water molecule that is the ultimate nucleophile in the depurination.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>1433290</pmid><doi>10.1016/0022-2836(92)90526-P</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 1992-10, Vol.227 (4), p.1136-1145
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_16649738
source MEDLINE; Elsevier ScienceDirect Journals
subjects A chain
active sites
Adenosine - chemistry
Adenosine - metabolism
adenylguanosine
analogs
Analytical, structural and metabolic biochemistry
Binding Sites
Biological and medical sciences
enzyme activity
Enzymes and enzyme inhibitors
formycin
Formycins - chemistry
Formycins - metabolism
Fundamental and applied biological sciences. Psychology
glycosidases
Guanosine - chemistry
Guanosine - metabolism
guanyladenosine
Hydrolases
mechanism of action
molecular conformation
Molecular Structure
N-glycosidase
nucleotides
Ribonucleotides - chemistry
Ribonucleotides - metabolism
ricin
Ricin - chemistry
Ricin - metabolism
Ricinus communis
substrate analogs
Substrate Specificity
substrates
X-Ray Diffraction
X-ray structure
title X-ray analysis of substrate analogs in the ricin A-chain active site
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20analysis%20of%20substrate%20analogs%20in%20the%20ricin%20A-chain%20active%20site&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Monzingo,%20Arthur%20F.&rft.date=1992-10-20&rft.volume=227&rft.issue=4&rft.spage=1136&rft.epage=1145&rft.pages=1136-1145&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1016/0022-2836(92)90526-P&rft_dat=%3Cproquest_cross%3E16649738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16649738&rft_id=info:pmid/1433290&rft_els_id=002228369290526P&rfr_iscdi=true