New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations

Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental progress 2014-10, Vol.33 (3), p.1042-1050
Hauptverfasser: Tolabi, Hajar Bagheri, Ayob, Shahrin Bin Md, Moradi, M.H., Shakarmi, Mehrnoosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1050
container_issue 3
container_start_page 1042
container_title Environmental progress
container_volume 33
creator Tolabi, Hajar Bagheri
Ayob, Shahrin Bin Md
Moradi, M.H.
Shakarmi, Mehrnoosh
description Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed method uses Bees algorithm as a heuristic and population‐based search technique. The best coefficients of linear and nonlinear empirical models and GSR are calculated for seven different climate regions of Iran using proposed algorithm written in MATLAB software. The results of the proposed method are compared with other techniques. The result shows that the proposed method is more accurate in estimating the monthly average daily GSR. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1042–1050, 2014
doi_str_mv 10.1002/ep.11858
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664212828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664212828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4648-9735abbf297099eee689808acefd3a2094e62b1fbf760dc69c9c3aed0c051ad43</originalsourceid><addsrcrecordid>eNp1kW9r1TAUh4soOOfAjxAQwTed-dc0eSljm4M53XD4Mpymp_dmtk2XtG7XT2-2Xa8g-CoJPL-HnPMrijeMHjJK-QecDhnTlX5W7DEjZVnLij7f3SV_WbxK6YZSJaQxe8WvC7wjM7r16G8XJF2IBNPsB5j9uCLzGskQxnndbwj8xAgrJC34_Fr1oYGepNBDJBFanwNhJEt6iDWIiUC_CtHP64HA2BIcJh-9yxG8XR7Z9Lp40UGf8GB77hfXJ8ffjj6V519Oz44-npdOKqlLU4sKmqbjpqbGIKLSRlMNDrtWAKdGouIN65quVrR1yjjjBGBLHa0YtFLsF--fvFMMecY028Enh30PI4YlWaaU5IxrrjP69h_0JixxzL_LVKU5F5KLv0IXQ0oROzvFvLG4sYzahxIsTvaxhIy-2woh5eG7CKPzacdzrXInospc-cTd-R43__XZ469_vFvepxnvdzzEH1bVoq7s94tT-1ldnlxVl1eWi9_hJKWv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658223423</pqid></control><display><type>article</type><title>New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tolabi, Hajar Bagheri ; Ayob, Shahrin Bin Md ; Moradi, M.H. ; Shakarmi, Mehrnoosh</creator><creatorcontrib>Tolabi, Hajar Bagheri ; Ayob, Shahrin Bin Md ; Moradi, M.H. ; Shakarmi, Mehrnoosh</creatorcontrib><description>Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed method uses Bees algorithm as a heuristic and population‐based search technique. The best coefficients of linear and nonlinear empirical models and GSR are calculated for seven different climate regions of Iran using proposed algorithm written in MATLAB software. The results of the proposed method are compared with other techniques. The result shows that the proposed method is more accurate in estimating the monthly average daily GSR. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1042–1050, 2014</description><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.11858</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Applied sciences ; Bees algorithm ; empirical coefficients ; empirical-based models ; Environmental engineering ; Exact sciences and technology ; global solar radiation ; intelligent-based models ; Pollution ; Radiation ; statistical regression techniques</subject><ispartof>Environmental progress, 2014-10, Vol.33 (3), p.1042-1050</ispartof><rights>2013 American Institute of Chemical Engineers Environ Prog</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4648-9735abbf297099eee689808acefd3a2094e62b1fbf760dc69c9c3aed0c051ad43</citedby><cites>FETCH-LOGICAL-c4648-9735abbf297099eee689808acefd3a2094e62b1fbf760dc69c9c3aed0c051ad43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.11858$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.11858$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28674435$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tolabi, Hajar Bagheri</creatorcontrib><creatorcontrib>Ayob, Shahrin Bin Md</creatorcontrib><creatorcontrib>Moradi, M.H.</creatorcontrib><creatorcontrib>Shakarmi, Mehrnoosh</creatorcontrib><title>New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations</title><title>Environmental progress</title><addtitle>Environ. Prog. Sustainable Energy</addtitle><description>Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed method uses Bees algorithm as a heuristic and population‐based search technique. The best coefficients of linear and nonlinear empirical models and GSR are calculated for seven different climate regions of Iran using proposed algorithm written in MATLAB software. The results of the proposed method are compared with other techniques. The result shows that the proposed method is more accurate in estimating the monthly average daily GSR. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1042–1050, 2014</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bees algorithm</subject><subject>empirical coefficients</subject><subject>empirical-based models</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>global solar radiation</subject><subject>intelligent-based models</subject><subject>Pollution</subject><subject>Radiation</subject><subject>statistical regression techniques</subject><issn>1944-7442</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kW9r1TAUh4soOOfAjxAQwTed-dc0eSljm4M53XD4Mpymp_dmtk2XtG7XT2-2Xa8g-CoJPL-HnPMrijeMHjJK-QecDhnTlX5W7DEjZVnLij7f3SV_WbxK6YZSJaQxe8WvC7wjM7r16G8XJF2IBNPsB5j9uCLzGskQxnndbwj8xAgrJC34_Fr1oYGepNBDJBFanwNhJEt6iDWIiUC_CtHP64HA2BIcJh-9yxG8XR7Z9Lp40UGf8GB77hfXJ8ffjj6V519Oz44-npdOKqlLU4sKmqbjpqbGIKLSRlMNDrtWAKdGouIN65quVrR1yjjjBGBLHa0YtFLsF--fvFMMecY028Enh30PI4YlWaaU5IxrrjP69h_0JixxzL_LVKU5F5KLv0IXQ0oROzvFvLG4sYzahxIsTvaxhIy-2woh5eG7CKPzacdzrXInospc-cTd-R43__XZ469_vFvepxnvdzzEH1bVoq7s94tT-1ldnlxVl1eWi9_hJKWv</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Tolabi, Hajar Bagheri</creator><creator>Ayob, Shahrin Bin Md</creator><creator>Moradi, M.H.</creator><creator>Shakarmi, Mehrnoosh</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201410</creationdate><title>New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations</title><author>Tolabi, Hajar Bagheri ; Ayob, Shahrin Bin Md ; Moradi, M.H. ; Shakarmi, Mehrnoosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4648-9735abbf297099eee689808acefd3a2094e62b1fbf760dc69c9c3aed0c051ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bees algorithm</topic><topic>empirical coefficients</topic><topic>empirical-based models</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>global solar radiation</topic><topic>intelligent-based models</topic><topic>Pollution</topic><topic>Radiation</topic><topic>statistical regression techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tolabi, Hajar Bagheri</creatorcontrib><creatorcontrib>Ayob, Shahrin Bin Md</creatorcontrib><creatorcontrib>Moradi, M.H.</creatorcontrib><creatorcontrib>Shakarmi, Mehrnoosh</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tolabi, Hajar Bagheri</au><au>Ayob, Shahrin Bin Md</au><au>Moradi, M.H.</au><au>Shakarmi, Mehrnoosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations</atitle><jtitle>Environmental progress</jtitle><addtitle>Environ. Prog. Sustainable Energy</addtitle><date>2014-10</date><risdate>2014</risdate><volume>33</volume><issue>3</issue><spage>1042</spage><epage>1050</epage><pages>1042-1050</pages><issn>1944-7442</issn><eissn>1944-7450</eissn><abstract>Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed method uses Bees algorithm as a heuristic and population‐based search technique. The best coefficients of linear and nonlinear empirical models and GSR are calculated for seven different climate regions of Iran using proposed algorithm written in MATLAB software. The results of the proposed method are compared with other techniques. The result shows that the proposed method is more accurate in estimating the monthly average daily GSR. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1042–1050, 2014</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/ep.11858</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-7442
ispartof Environmental progress, 2014-10, Vol.33 (3), p.1042-1050
issn 1944-7442
1944-7450
language eng
recordid cdi_proquest_miscellaneous_1664212828
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Applied sciences
Bees algorithm
empirical coefficients
empirical-based models
Environmental engineering
Exact sciences and technology
global solar radiation
intelligent-based models
Pollution
Radiation
statistical regression techniques
title New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20technique%20for%20estimating%20the%20monthly%20average%20daily%20global%20solar%20radiation%20using%20bees%20algorithm%20and%20empirical%20equations&rft.jtitle=Environmental%20progress&rft.au=Tolabi,%20Hajar%20Bagheri&rft.date=2014-10&rft.volume=33&rft.issue=3&rft.spage=1042&rft.epage=1050&rft.pages=1042-1050&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.11858&rft_dat=%3Cproquest_cross%3E1664212828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658223423&rft_id=info:pmid/&rfr_iscdi=true