New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations
Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed...
Gespeichert in:
Veröffentlicht in: | Environmental progress 2014-10, Vol.33 (3), p.1042-1050 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1050 |
---|---|
container_issue | 3 |
container_start_page | 1042 |
container_title | Environmental progress |
container_volume | 33 |
creator | Tolabi, Hajar Bagheri Ayob, Shahrin Bin Md Moradi, M.H. Shakarmi, Mehrnoosh |
description | Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed method uses Bees algorithm as a heuristic and population‐based search technique. The best coefficients of linear and nonlinear empirical models and GSR are calculated for seven different climate regions of Iran using proposed algorithm written in MATLAB software. The results of the proposed method are compared with other techniques. The result shows that the proposed method is more accurate in estimating the monthly average daily GSR. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1042–1050, 2014 |
doi_str_mv | 10.1002/ep.11858 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664212828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664212828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4648-9735abbf297099eee689808acefd3a2094e62b1fbf760dc69c9c3aed0c051ad43</originalsourceid><addsrcrecordid>eNp1kW9r1TAUh4soOOfAjxAQwTed-dc0eSljm4M53XD4Mpymp_dmtk2XtG7XT2-2Xa8g-CoJPL-HnPMrijeMHjJK-QecDhnTlX5W7DEjZVnLij7f3SV_WbxK6YZSJaQxe8WvC7wjM7r16G8XJF2IBNPsB5j9uCLzGskQxnndbwj8xAgrJC34_Fr1oYGepNBDJBFanwNhJEt6iDWIiUC_CtHP64HA2BIcJh-9yxG8XR7Z9Lp40UGf8GB77hfXJ8ffjj6V519Oz44-npdOKqlLU4sKmqbjpqbGIKLSRlMNDrtWAKdGouIN65quVrR1yjjjBGBLHa0YtFLsF--fvFMMecY028Enh30PI4YlWaaU5IxrrjP69h_0JixxzL_LVKU5F5KLv0IXQ0oROzvFvLG4sYzahxIsTvaxhIy-2woh5eG7CKPzacdzrXInospc-cTd-R43__XZ469_vFvepxnvdzzEH1bVoq7s94tT-1ldnlxVl1eWi9_hJKWv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658223423</pqid></control><display><type>article</type><title>New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tolabi, Hajar Bagheri ; Ayob, Shahrin Bin Md ; Moradi, M.H. ; Shakarmi, Mehrnoosh</creator><creatorcontrib>Tolabi, Hajar Bagheri ; Ayob, Shahrin Bin Md ; Moradi, M.H. ; Shakarmi, Mehrnoosh</creatorcontrib><description>Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed method uses Bees algorithm as a heuristic and population‐based search technique. The best coefficients of linear and nonlinear empirical models and GSR are calculated for seven different climate regions of Iran using proposed algorithm written in MATLAB software. The results of the proposed method are compared with other techniques. The result shows that the proposed method is more accurate in estimating the monthly average daily GSR. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1042–1050, 2014</description><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.11858</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Applied sciences ; Bees algorithm ; empirical coefficients ; empirical-based models ; Environmental engineering ; Exact sciences and technology ; global solar radiation ; intelligent-based models ; Pollution ; Radiation ; statistical regression techniques</subject><ispartof>Environmental progress, 2014-10, Vol.33 (3), p.1042-1050</ispartof><rights>2013 American Institute of Chemical Engineers Environ Prog</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4648-9735abbf297099eee689808acefd3a2094e62b1fbf760dc69c9c3aed0c051ad43</citedby><cites>FETCH-LOGICAL-c4648-9735abbf297099eee689808acefd3a2094e62b1fbf760dc69c9c3aed0c051ad43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.11858$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.11858$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28674435$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tolabi, Hajar Bagheri</creatorcontrib><creatorcontrib>Ayob, Shahrin Bin Md</creatorcontrib><creatorcontrib>Moradi, M.H.</creatorcontrib><creatorcontrib>Shakarmi, Mehrnoosh</creatorcontrib><title>New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations</title><title>Environmental progress</title><addtitle>Environ. Prog. Sustainable Energy</addtitle><description>Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed method uses Bees algorithm as a heuristic and population‐based search technique. The best coefficients of linear and nonlinear empirical models and GSR are calculated for seven different climate regions of Iran using proposed algorithm written in MATLAB software. The results of the proposed method are compared with other techniques. The result shows that the proposed method is more accurate in estimating the monthly average daily GSR. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1042–1050, 2014</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bees algorithm</subject><subject>empirical coefficients</subject><subject>empirical-based models</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>global solar radiation</subject><subject>intelligent-based models</subject><subject>Pollution</subject><subject>Radiation</subject><subject>statistical regression techniques</subject><issn>1944-7442</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kW9r1TAUh4soOOfAjxAQwTed-dc0eSljm4M53XD4Mpymp_dmtk2XtG7XT2-2Xa8g-CoJPL-HnPMrijeMHjJK-QecDhnTlX5W7DEjZVnLij7f3SV_WbxK6YZSJaQxe8WvC7wjM7r16G8XJF2IBNPsB5j9uCLzGskQxnndbwj8xAgrJC34_Fr1oYGepNBDJBFanwNhJEt6iDWIiUC_CtHP64HA2BIcJh-9yxG8XR7Z9Lp40UGf8GB77hfXJ8ffjj6V519Oz44-npdOKqlLU4sKmqbjpqbGIKLSRlMNDrtWAKdGouIN65quVrR1yjjjBGBLHa0YtFLsF--fvFMMecY028Enh30PI4YlWaaU5IxrrjP69h_0JixxzL_LVKU5F5KLv0IXQ0oROzvFvLG4sYzahxIsTvaxhIy-2woh5eG7CKPzacdzrXInospc-cTd-R43__XZ469_vFvepxnvdzzEH1bVoq7s94tT-1ldnlxVl1eWi9_hJKWv</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Tolabi, Hajar Bagheri</creator><creator>Ayob, Shahrin Bin Md</creator><creator>Moradi, M.H.</creator><creator>Shakarmi, Mehrnoosh</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201410</creationdate><title>New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations</title><author>Tolabi, Hajar Bagheri ; Ayob, Shahrin Bin Md ; Moradi, M.H. ; Shakarmi, Mehrnoosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4648-9735abbf297099eee689808acefd3a2094e62b1fbf760dc69c9c3aed0c051ad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bees algorithm</topic><topic>empirical coefficients</topic><topic>empirical-based models</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>global solar radiation</topic><topic>intelligent-based models</topic><topic>Pollution</topic><topic>Radiation</topic><topic>statistical regression techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tolabi, Hajar Bagheri</creatorcontrib><creatorcontrib>Ayob, Shahrin Bin Md</creatorcontrib><creatorcontrib>Moradi, M.H.</creatorcontrib><creatorcontrib>Shakarmi, Mehrnoosh</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tolabi, Hajar Bagheri</au><au>Ayob, Shahrin Bin Md</au><au>Moradi, M.H.</au><au>Shakarmi, Mehrnoosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations</atitle><jtitle>Environmental progress</jtitle><addtitle>Environ. Prog. Sustainable Energy</addtitle><date>2014-10</date><risdate>2014</risdate><volume>33</volume><issue>3</issue><spage>1042</spage><epage>1050</epage><pages>1042-1050</pages><issn>1944-7442</issn><eissn>1944-7450</eissn><abstract>Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this article, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation (GSR) on a horizontal surface. The proposed method uses Bees algorithm as a heuristic and population‐based search technique. The best coefficients of linear and nonlinear empirical models and GSR are calculated for seven different climate regions of Iran using proposed algorithm written in MATLAB software. The results of the proposed method are compared with other techniques. The result shows that the proposed method is more accurate in estimating the monthly average daily GSR. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1042–1050, 2014</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/ep.11858</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-7442 |
ispartof | Environmental progress, 2014-10, Vol.33 (3), p.1042-1050 |
issn | 1944-7442 1944-7450 |
language | eng |
recordid | cdi_proquest_miscellaneous_1664212828 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Applied sciences Bees algorithm empirical coefficients empirical-based models Environmental engineering Exact sciences and technology global solar radiation intelligent-based models Pollution Radiation statistical regression techniques |
title | New technique for estimating the monthly average daily global solar radiation using bees algorithm and empirical equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20technique%20for%20estimating%20the%20monthly%20average%20daily%20global%20solar%20radiation%20using%20bees%20algorithm%20and%20empirical%20equations&rft.jtitle=Environmental%20progress&rft.au=Tolabi,%20Hajar%20Bagheri&rft.date=2014-10&rft.volume=33&rft.issue=3&rft.spage=1042&rft.epage=1050&rft.pages=1042-1050&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.11858&rft_dat=%3Cproquest_cross%3E1664212828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658223423&rft_id=info:pmid/&rfr_iscdi=true |