Moving through three-dimensional phase diagrams of monoclonal antibodies
Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2014-09, Vol.30 (5), p.1103-1113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1113 |
---|---|
container_issue | 5 |
container_start_page | 1103 |
container_title | Biotechnology progress |
container_volume | 30 |
creator | Rakel, Natalie Baum, Miriam Hubbuch, Jürgen |
description | Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three‐dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1103–1113, 2014 |
doi_str_mv | 10.1002/btpr.1947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664211145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3604760191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4947-69d456bb4bd0cc616c1739a139bb020c155a88ccb19affe20487a61f6c58a9973</originalsourceid><addsrcrecordid>eNqN0ctO3DAUBmALtYIp7aIvUEXqhi4Cx_El9pIOFCroRdUglpbtODOGJJ7aCZS3b9IZWCAhdXUW_s4v2z9C7zEcYoDiyPTreIglLXfQDLMCcg6EvEIzUTKel5KIPfQmpRsAEMCLXbRXMKBUcDZD59_Cne-WWb-KYViupulcXvnWdcmHTjfZeqWTyyqvl1G3KQt11oYu2Obfoe56b0LlXXqLXte6Se7ddu6jqy-ni_l5fvnj7Ov8-DK3dLxgzmVFGTeGmgqs5ZhbXBKpMZHGQAEWM6aFsNZgqevaFUBFqTmuuWVCS1mSfXSwyV3H8HtwqVetT9Y1je5cGJLCnNMCY0zZf1CQDLgkdKQfn9GbMMTxhZNiosCUAx7Vp42yMaQUXa3W0bc6PigMampCTU2oqYnRftgmDqZ11ZN8_PoRHG3AvW_cw8tJ6vPi569tZL7Z8Kl3f542dLxVvCQlU9ffz9TJ_OJkrFmoBfkLqtmg1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658214601</pqid></control><display><type>article</type><title>Moving through three-dimensional phase diagrams of monoclonal antibodies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rakel, Natalie ; Baum, Miriam ; Hubbuch, Jürgen</creator><creatorcontrib>Rakel, Natalie ; Baum, Miriam ; Hubbuch, Jürgen</creatorcontrib><description>Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three‐dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1103–1113, 2014</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.1947</identifier><identifier>PMID: 25044865</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Antibodies, Monoclonal - chemistry ; Antibodies, Monoclonal - drug effects ; Antibodies, Monoclonal - metabolism ; Biotechnology - methods ; Crystallization ; high-throughput screening ; High-Throughput Screening Assays ; Hydrogen-Ion Concentration ; Ions - pharmacology ; monoclonal antibody ; phase diagram ; Protein Aggregates - drug effects ; protein phase behavior ; protein phase behavior, phase diagram, monoclonal antibody, crystallization ; Research Design ; Sodium Chloride - chemistry ; Sodium Chloride - pharmacology ; Sulfates - chemistry ; Sulfates - pharmacology</subject><ispartof>Biotechnology progress, 2014-09, Vol.30 (5), p.1103-1113</ispartof><rights>2014 American Institute of Chemical Engineers</rights><rights>2014 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4947-69d456bb4bd0cc616c1739a139bb020c155a88ccb19affe20487a61f6c58a9973</citedby><cites>FETCH-LOGICAL-c4947-69d456bb4bd0cc616c1739a139bb020c155a88ccb19affe20487a61f6c58a9973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.1947$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.1947$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25044865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rakel, Natalie</creatorcontrib><creatorcontrib>Baum, Miriam</creatorcontrib><creatorcontrib>Hubbuch, Jürgen</creatorcontrib><title>Moving through three-dimensional phase diagrams of monoclonal antibodies</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three‐dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1103–1113, 2014</description><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibodies, Monoclonal - drug effects</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Biotechnology - methods</subject><subject>Crystallization</subject><subject>high-throughput screening</subject><subject>High-Throughput Screening Assays</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ions - pharmacology</subject><subject>monoclonal antibody</subject><subject>phase diagram</subject><subject>Protein Aggregates - drug effects</subject><subject>protein phase behavior</subject><subject>protein phase behavior, phase diagram, monoclonal antibody, crystallization</subject><subject>Research Design</subject><subject>Sodium Chloride - chemistry</subject><subject>Sodium Chloride - pharmacology</subject><subject>Sulfates - chemistry</subject><subject>Sulfates - pharmacology</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctO3DAUBmALtYIp7aIvUEXqhi4Cx_El9pIOFCroRdUglpbtODOGJJ7aCZS3b9IZWCAhdXUW_s4v2z9C7zEcYoDiyPTreIglLXfQDLMCcg6EvEIzUTKel5KIPfQmpRsAEMCLXbRXMKBUcDZD59_Cne-WWb-KYViupulcXvnWdcmHTjfZeqWTyyqvl1G3KQt11oYu2Obfoe56b0LlXXqLXte6Se7ddu6jqy-ni_l5fvnj7Ov8-DK3dLxgzmVFGTeGmgqs5ZhbXBKpMZHGQAEWM6aFsNZgqevaFUBFqTmuuWVCS1mSfXSwyV3H8HtwqVetT9Y1je5cGJLCnNMCY0zZf1CQDLgkdKQfn9GbMMTxhZNiosCUAx7Vp42yMaQUXa3W0bc6PigMampCTU2oqYnRftgmDqZ11ZN8_PoRHG3AvW_cw8tJ6vPi569tZL7Z8Kl3f542dLxVvCQlU9ffz9TJ_OJkrFmoBfkLqtmg1g</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Rakel, Natalie</creator><creator>Baum, Miriam</creator><creator>Hubbuch, Jürgen</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201409</creationdate><title>Moving through three-dimensional phase diagrams of monoclonal antibodies</title><author>Rakel, Natalie ; Baum, Miriam ; Hubbuch, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4947-69d456bb4bd0cc616c1739a139bb020c155a88ccb19affe20487a61f6c58a9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibodies, Monoclonal - drug effects</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Biotechnology - methods</topic><topic>Crystallization</topic><topic>high-throughput screening</topic><topic>High-Throughput Screening Assays</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ions - pharmacology</topic><topic>monoclonal antibody</topic><topic>phase diagram</topic><topic>Protein Aggregates - drug effects</topic><topic>protein phase behavior</topic><topic>protein phase behavior, phase diagram, monoclonal antibody, crystallization</topic><topic>Research Design</topic><topic>Sodium Chloride - chemistry</topic><topic>Sodium Chloride - pharmacology</topic><topic>Sulfates - chemistry</topic><topic>Sulfates - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakel, Natalie</creatorcontrib><creatorcontrib>Baum, Miriam</creatorcontrib><creatorcontrib>Hubbuch, Jürgen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakel, Natalie</au><au>Baum, Miriam</au><au>Hubbuch, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving through three-dimensional phase diagrams of monoclonal antibodies</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2014-09</date><risdate>2014</risdate><volume>30</volume><issue>5</issue><spage>1103</spage><epage>1113</epage><pages>1103-1113</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three‐dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1103–1113, 2014</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25044865</pmid><doi>10.1002/btpr.1947</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2014-09, Vol.30 (5), p.1103-1113 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_1664211145 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - drug effects Antibodies, Monoclonal - metabolism Biotechnology - methods Crystallization high-throughput screening High-Throughput Screening Assays Hydrogen-Ion Concentration Ions - pharmacology monoclonal antibody phase diagram Protein Aggregates - drug effects protein phase behavior protein phase behavior, phase diagram, monoclonal antibody, crystallization Research Design Sodium Chloride - chemistry Sodium Chloride - pharmacology Sulfates - chemistry Sulfates - pharmacology |
title | Moving through three-dimensional phase diagrams of monoclonal antibodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20through%20three-dimensional%20phase%20diagrams%20of%20monoclonal%20antibodies&rft.jtitle=Biotechnology%20progress&rft.au=Rakel,%20Natalie&rft.date=2014-09&rft.volume=30&rft.issue=5&rft.spage=1103&rft.epage=1113&rft.pages=1103-1113&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.1947&rft_dat=%3Cproquest_cross%3E3604760191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658214601&rft_id=info:pmid/25044865&rfr_iscdi=true |