Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model
In our earlier studies, Semliki Forest virus vector VA7 completely eliminated type I interferon (IFN-I)-unresponsive human U87-luc glioma xenografts, whereas interferon-responsive mouse gliomas proved refractory. Here, we describe in two clones of CT26 murine colon carcinoma, opposed patterns of IFN...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2015-01, Vol.22 (1), p.65-75 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Gene therapy |
container_volume | 22 |
creator | Ruotsalainen, J J Kaikkonen, M U Niittykoski, M Martikainen, M W Lemay, C G Cox, J De Silva, N S Kus, A Falls, T J Diallo, J-S Le Boeuf, F Bell, J C Ylä-Herttuala, S Hinkkanen, A E Vähä-Koskela, M J |
description | In our earlier studies, Semliki Forest virus vector VA7 completely eliminated type I interferon (IFN-I)-unresponsive human U87-luc glioma xenografts, whereas interferon-responsive mouse gliomas proved refractory. Here, we describe in two clones of CT26 murine colon carcinoma, opposed patterns of IFN-I responsiveness and sensitivity to VA7. Both CT26WT and CT26LacZ clones secreted biologically active interferon
in vitro
upon virus infection but only CT26WT cells were protected. Focal infection of CT26WT cultures was self-limiting but could be rescued using IFN-I pathway inhibitor Ruxolitinib or antibody against IFNβ. Whole transcriptome sequencing (RNA-Seq) and protein expression analysis revealed that CT26WT cells constitutively expressed 56 different genes associated with pattern recognition and IFN-I signaling pathways, spanning two reported anti-RNA virus gene signatures and 22 genes with reported anti-alphaviral activity. Whereas CT26WT tumors were strictly virus-resistant
in vivo
, infection of CT26LacZ tumors resulted in complete tumor eradication in both immunocompetent and severe combined immune deficient mice. In double-flank transplantation experiments, CT26WT tumors grew despite successful eradication of CT26LacZ tumors from the contralateral flank. Tumor growth progressed uninhibited also when CT26LacZ inoculums contained only a small fraction of CT26WT cells, demonstrating dominance of IFN responsiveness when heterogeneous tumors are targeted with interferon-sensitive oncolytic viruses. |
doi_str_mv | 10.1038/gt.2014.83 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664208445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A610205655</galeid><sourcerecordid>A610205655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743t-370cda49c6c5edd0d9df39fd0cea55ec56c0f12c815e0c71fda267019419bead3</originalsourceid><addsrcrecordid>eNqNk1uLEzEUgAdR3Lr64g-QAWHxQmvukzwuxcvCgqDrc8gmZ9osM5OaZBaLf94MXaVVqZJAyDnf-RJyqaqnGC0wovLNKi8Iwmwh6b1qhlkj5pwJcr-aISXUvMFEnlSPUrpBCLFGkofVCeGEYtyQWfV92YXBdPWtid5kH4baTz1DbCGWWYS0CUOC2kGJ9X6AVOc11GHMNvRlbOsw2NBts7f1rY-hJKPZbCdNH8ZSuLwioi5EkVkTrR9Cb0rKQfe4etCaLsGTu_G0-vLu7dXyw_zy4_uL5fnl3DaM5jltkHWGKSssB-eQU66lqnXIguEcLBcWtZhYiTkg2-DWGSIahBXD6hqMo6fVi513E8PXEVLWvU8Wus4MULaosRCMIMkY_w-U8UZiiVBBn_-G3oQxlrNMmlCKBW0UUceo4qKYKcn2XCvTgfZDG3I0dlpanwuMCOKC86MUVXJ3qYVa_IUqzUHvbRig9SV-UPDyoKAwGb7llRlT0hefPx1u4V_svvdsj12D6fI6hW6cXlk6lB4F942vdqCNIaUIrd5E35u41Rjp6SvoVdbTV9CSFvjZ3cmP1z24X-jPt1-A1zsgldSwgrh3NX_qfgA_RAww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643149840</pqid></control><display><type>article</type><title>Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerNature Complete Journals</source><creator>Ruotsalainen, J J ; Kaikkonen, M U ; Niittykoski, M ; Martikainen, M W ; Lemay, C G ; Cox, J ; De Silva, N S ; Kus, A ; Falls, T J ; Diallo, J-S ; Le Boeuf, F ; Bell, J C ; Ylä-Herttuala, S ; Hinkkanen, A E ; Vähä-Koskela, M J</creator><creatorcontrib>Ruotsalainen, J J ; Kaikkonen, M U ; Niittykoski, M ; Martikainen, M W ; Lemay, C G ; Cox, J ; De Silva, N S ; Kus, A ; Falls, T J ; Diallo, J-S ; Le Boeuf, F ; Bell, J C ; Ylä-Herttuala, S ; Hinkkanen, A E ; Vähä-Koskela, M J</creatorcontrib><description>In our earlier studies, Semliki Forest virus vector VA7 completely eliminated type I interferon (IFN-I)-unresponsive human U87-luc glioma xenografts, whereas interferon-responsive mouse gliomas proved refractory. Here, we describe in two clones of CT26 murine colon carcinoma, opposed patterns of IFN-I responsiveness and sensitivity to VA7. Both CT26WT and CT26LacZ clones secreted biologically active interferon
in vitro
upon virus infection but only CT26WT cells were protected. Focal infection of CT26WT cultures was self-limiting but could be rescued using IFN-I pathway inhibitor Ruxolitinib or antibody against IFNβ. Whole transcriptome sequencing (RNA-Seq) and protein expression analysis revealed that CT26WT cells constitutively expressed 56 different genes associated with pattern recognition and IFN-I signaling pathways, spanning two reported anti-RNA virus gene signatures and 22 genes with reported anti-alphaviral activity. Whereas CT26WT tumors were strictly virus-resistant
in vivo
, infection of CT26LacZ tumors resulted in complete tumor eradication in both immunocompetent and severe combined immune deficient mice. In double-flank transplantation experiments, CT26WT tumors grew despite successful eradication of CT26LacZ tumors from the contralateral flank. Tumor growth progressed uninhibited also when CT26LacZ inoculums contained only a small fraction of CT26WT cells, demonstrating dominance of IFN responsiveness when heterogeneous tumors are targeted with interferon-sensitive oncolytic viruses.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/gt.2014.83</identifier><identifier>PMID: 25231172</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 14/63 ; 38/91 ; 49/39 ; 631/67/1504/1885 ; 64/60 ; 82/80 ; 96/106 ; Analysis ; Animal experimentation ; Animals ; Antibodies ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Biological activity ; Biological response modifiers ; Biomedical and Life Sciences ; Biomedicine ; Brain tumors ; Bystander Effect ; Carcinoma ; Cell Biology ; Cell Line, Tumor ; Cloning ; Colon ; Colon cancer ; Colonic Neoplasms - immunology ; Colonic Neoplasms - pathology ; Colonic Neoplasms - therapy ; Colorectal cancer ; Drug metabolism ; Drug therapy ; Gene Expression ; Gene Therapy ; Genes ; Genetic aspects ; Genetic Vectors ; Glioma ; Gliomas ; Green Fluorescent Proteins - biosynthesis ; Health aspects ; Human Genetics ; Infection ; Infections ; Interferon ; Interferon Type I - pharmacology ; Interferon Type I - therapeutic use ; Interferon-beta - secretion ; Mice, Inbred BALB C ; Nanotechnology ; Necrosis ; Neoplasm Transplantation ; Oncolysis ; Oncolytic viral therapy ; Oncolytic Virotherapy ; Oncolytic Viruses - genetics ; original-article ; Pattern recognition ; Properties ; RNA ; RNA sequencing ; RNA viruses ; Ruxolitinib ; Semliki Forest virus ; Semliki forest virus - genetics ; Signal transduction ; STAT1 Transcription Factor - metabolism ; Surgery ; Transfection ; Transplantation ; Treatment Outcome ; Tumors ; Virus diseases ; Viruses ; Xenografts ; β-Interferon</subject><ispartof>Gene therapy, 2015-01, Vol.22 (1), p.65-75</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743t-370cda49c6c5edd0d9df39fd0cea55ec56c0f12c815e0c71fda267019419bead3</citedby><cites>FETCH-LOGICAL-c743t-370cda49c6c5edd0d9df39fd0cea55ec56c0f12c815e0c71fda267019419bead3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/gt.2014.83$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/gt.2014.83$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25231172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruotsalainen, J J</creatorcontrib><creatorcontrib>Kaikkonen, M U</creatorcontrib><creatorcontrib>Niittykoski, M</creatorcontrib><creatorcontrib>Martikainen, M W</creatorcontrib><creatorcontrib>Lemay, C G</creatorcontrib><creatorcontrib>Cox, J</creatorcontrib><creatorcontrib>De Silva, N S</creatorcontrib><creatorcontrib>Kus, A</creatorcontrib><creatorcontrib>Falls, T J</creatorcontrib><creatorcontrib>Diallo, J-S</creatorcontrib><creatorcontrib>Le Boeuf, F</creatorcontrib><creatorcontrib>Bell, J C</creatorcontrib><creatorcontrib>Ylä-Herttuala, S</creatorcontrib><creatorcontrib>Hinkkanen, A E</creatorcontrib><creatorcontrib>Vähä-Koskela, M J</creatorcontrib><title>Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>In our earlier studies, Semliki Forest virus vector VA7 completely eliminated type I interferon (IFN-I)-unresponsive human U87-luc glioma xenografts, whereas interferon-responsive mouse gliomas proved refractory. Here, we describe in two clones of CT26 murine colon carcinoma, opposed patterns of IFN-I responsiveness and sensitivity to VA7. Both CT26WT and CT26LacZ clones secreted biologically active interferon
in vitro
upon virus infection but only CT26WT cells were protected. Focal infection of CT26WT cultures was self-limiting but could be rescued using IFN-I pathway inhibitor Ruxolitinib or antibody against IFNβ. Whole transcriptome sequencing (RNA-Seq) and protein expression analysis revealed that CT26WT cells constitutively expressed 56 different genes associated with pattern recognition and IFN-I signaling pathways, spanning two reported anti-RNA virus gene signatures and 22 genes with reported anti-alphaviral activity. Whereas CT26WT tumors were strictly virus-resistant
in vivo
, infection of CT26LacZ tumors resulted in complete tumor eradication in both immunocompetent and severe combined immune deficient mice. In double-flank transplantation experiments, CT26WT tumors grew despite successful eradication of CT26LacZ tumors from the contralateral flank. Tumor growth progressed uninhibited also when CT26LacZ inoculums contained only a small fraction of CT26WT cells, demonstrating dominance of IFN responsiveness when heterogeneous tumors are targeted with interferon-sensitive oncolytic viruses.</description><subject>13</subject><subject>13/1</subject><subject>14/63</subject><subject>38/91</subject><subject>49/39</subject><subject>631/67/1504/1885</subject><subject>64/60</subject><subject>82/80</subject><subject>96/106</subject><subject>Analysis</subject><subject>Animal experimentation</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biological activity</subject><subject>Biological response modifiers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain tumors</subject><subject>Bystander Effect</subject><subject>Carcinoma</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cloning</subject><subject>Colon</subject><subject>Colon cancer</subject><subject>Colonic Neoplasms - immunology</subject><subject>Colonic Neoplasms - pathology</subject><subject>Colonic Neoplasms - therapy</subject><subject>Colorectal cancer</subject><subject>Drug metabolism</subject><subject>Drug therapy</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Vectors</subject><subject>Glioma</subject><subject>Gliomas</subject><subject>Green Fluorescent Proteins - biosynthesis</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Infection</subject><subject>Infections</subject><subject>Interferon</subject><subject>Interferon Type I - pharmacology</subject><subject>Interferon Type I - therapeutic use</subject><subject>Interferon-beta - secretion</subject><subject>Mice, Inbred BALB C</subject><subject>Nanotechnology</subject><subject>Necrosis</subject><subject>Neoplasm Transplantation</subject><subject>Oncolysis</subject><subject>Oncolytic viral therapy</subject><subject>Oncolytic Virotherapy</subject><subject>Oncolytic Viruses - genetics</subject><subject>original-article</subject><subject>Pattern recognition</subject><subject>Properties</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA viruses</subject><subject>Ruxolitinib</subject><subject>Semliki Forest virus</subject><subject>Semliki forest virus - genetics</subject><subject>Signal transduction</subject><subject>STAT1 Transcription Factor - metabolism</subject><subject>Surgery</subject><subject>Transfection</subject><subject>Transplantation</subject><subject>Treatment Outcome</subject><subject>Tumors</subject><subject>Virus diseases</subject><subject>Viruses</subject><subject>Xenografts</subject><subject>β-Interferon</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNk1uLEzEUgAdR3Lr64g-QAWHxQmvukzwuxcvCgqDrc8gmZ9osM5OaZBaLf94MXaVVqZJAyDnf-RJyqaqnGC0wovLNKi8Iwmwh6b1qhlkj5pwJcr-aISXUvMFEnlSPUrpBCLFGkofVCeGEYtyQWfV92YXBdPWtid5kH4baTz1DbCGWWYS0CUOC2kGJ9X6AVOc11GHMNvRlbOsw2NBts7f1rY-hJKPZbCdNH8ZSuLwioi5EkVkTrR9Cb0rKQfe4etCaLsGTu_G0-vLu7dXyw_zy4_uL5fnl3DaM5jltkHWGKSssB-eQU66lqnXIguEcLBcWtZhYiTkg2-DWGSIahBXD6hqMo6fVi513E8PXEVLWvU8Wus4MULaosRCMIMkY_w-U8UZiiVBBn_-G3oQxlrNMmlCKBW0UUceo4qKYKcn2XCvTgfZDG3I0dlpanwuMCOKC86MUVXJ3qYVa_IUqzUHvbRig9SV-UPDyoKAwGb7llRlT0hefPx1u4V_svvdsj12D6fI6hW6cXlk6lB4F942vdqCNIaUIrd5E35u41Rjp6SvoVdbTV9CSFvjZ3cmP1z24X-jPt1-A1zsgldSwgrh3NX_qfgA_RAww</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Ruotsalainen, J J</creator><creator>Kaikkonen, M U</creator><creator>Niittykoski, M</creator><creator>Martikainen, M W</creator><creator>Lemay, C G</creator><creator>Cox, J</creator><creator>De Silva, N S</creator><creator>Kus, A</creator><creator>Falls, T J</creator><creator>Diallo, J-S</creator><creator>Le Boeuf, F</creator><creator>Bell, J C</creator><creator>Ylä-Herttuala, S</creator><creator>Hinkkanen, A E</creator><creator>Vähä-Koskela, M J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20150101</creationdate><title>Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model</title><author>Ruotsalainen, J J ; Kaikkonen, M U ; Niittykoski, M ; Martikainen, M W ; Lemay, C G ; Cox, J ; De Silva, N S ; Kus, A ; Falls, T J ; Diallo, J-S ; Le Boeuf, F ; Bell, J C ; Ylä-Herttuala, S ; Hinkkanen, A E ; Vähä-Koskela, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743t-370cda49c6c5edd0d9df39fd0cea55ec56c0f12c815e0c71fda267019419bead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>13</topic><topic>13/1</topic><topic>14/63</topic><topic>38/91</topic><topic>49/39</topic><topic>631/67/1504/1885</topic><topic>64/60</topic><topic>82/80</topic><topic>96/106</topic><topic>Analysis</topic><topic>Animal experimentation</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biological activity</topic><topic>Biological response modifiers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain tumors</topic><topic>Bystander Effect</topic><topic>Carcinoma</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cloning</topic><topic>Colon</topic><topic>Colon cancer</topic><topic>Colonic Neoplasms - immunology</topic><topic>Colonic Neoplasms - pathology</topic><topic>Colonic Neoplasms - therapy</topic><topic>Colorectal cancer</topic><topic>Drug metabolism</topic><topic>Drug therapy</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Vectors</topic><topic>Glioma</topic><topic>Gliomas</topic><topic>Green Fluorescent Proteins - biosynthesis</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Infection</topic><topic>Infections</topic><topic>Interferon</topic><topic>Interferon Type I - pharmacology</topic><topic>Interferon Type I - therapeutic use</topic><topic>Interferon-beta - secretion</topic><topic>Mice, Inbred BALB C</topic><topic>Nanotechnology</topic><topic>Necrosis</topic><topic>Neoplasm Transplantation</topic><topic>Oncolysis</topic><topic>Oncolytic viral therapy</topic><topic>Oncolytic Virotherapy</topic><topic>Oncolytic Viruses - genetics</topic><topic>original-article</topic><topic>Pattern recognition</topic><topic>Properties</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA viruses</topic><topic>Ruxolitinib</topic><topic>Semliki Forest virus</topic><topic>Semliki forest virus - genetics</topic><topic>Signal transduction</topic><topic>STAT1 Transcription Factor - metabolism</topic><topic>Surgery</topic><topic>Transfection</topic><topic>Transplantation</topic><topic>Treatment Outcome</topic><topic>Tumors</topic><topic>Virus diseases</topic><topic>Viruses</topic><topic>Xenografts</topic><topic>β-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruotsalainen, J J</creatorcontrib><creatorcontrib>Kaikkonen, M U</creatorcontrib><creatorcontrib>Niittykoski, M</creatorcontrib><creatorcontrib>Martikainen, M W</creatorcontrib><creatorcontrib>Lemay, C G</creatorcontrib><creatorcontrib>Cox, J</creatorcontrib><creatorcontrib>De Silva, N S</creatorcontrib><creatorcontrib>Kus, A</creatorcontrib><creatorcontrib>Falls, T J</creatorcontrib><creatorcontrib>Diallo, J-S</creatorcontrib><creatorcontrib>Le Boeuf, F</creatorcontrib><creatorcontrib>Bell, J C</creatorcontrib><creatorcontrib>Ylä-Herttuala, S</creatorcontrib><creatorcontrib>Hinkkanen, A E</creatorcontrib><creatorcontrib>Vähä-Koskela, M J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruotsalainen, J J</au><au>Kaikkonen, M U</au><au>Niittykoski, M</au><au>Martikainen, M W</au><au>Lemay, C G</au><au>Cox, J</au><au>De Silva, N S</au><au>Kus, A</au><au>Falls, T J</au><au>Diallo, J-S</au><au>Le Boeuf, F</au><au>Bell, J C</au><au>Ylä-Herttuala, S</au><au>Hinkkanen, A E</au><au>Vähä-Koskela, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>22</volume><issue>1</issue><spage>65</spage><epage>75</epage><pages>65-75</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>In our earlier studies, Semliki Forest virus vector VA7 completely eliminated type I interferon (IFN-I)-unresponsive human U87-luc glioma xenografts, whereas interferon-responsive mouse gliomas proved refractory. Here, we describe in two clones of CT26 murine colon carcinoma, opposed patterns of IFN-I responsiveness and sensitivity to VA7. Both CT26WT and CT26LacZ clones secreted biologically active interferon
in vitro
upon virus infection but only CT26WT cells were protected. Focal infection of CT26WT cultures was self-limiting but could be rescued using IFN-I pathway inhibitor Ruxolitinib or antibody against IFNβ. Whole transcriptome sequencing (RNA-Seq) and protein expression analysis revealed that CT26WT cells constitutively expressed 56 different genes associated with pattern recognition and IFN-I signaling pathways, spanning two reported anti-RNA virus gene signatures and 22 genes with reported anti-alphaviral activity. Whereas CT26WT tumors were strictly virus-resistant
in vivo
, infection of CT26LacZ tumors resulted in complete tumor eradication in both immunocompetent and severe combined immune deficient mice. In double-flank transplantation experiments, CT26WT tumors grew despite successful eradication of CT26LacZ tumors from the contralateral flank. Tumor growth progressed uninhibited also when CT26LacZ inoculums contained only a small fraction of CT26WT cells, demonstrating dominance of IFN responsiveness when heterogeneous tumors are targeted with interferon-sensitive oncolytic viruses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25231172</pmid><doi>10.1038/gt.2014.83</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-7128 |
ispartof | Gene therapy, 2015-01, Vol.22 (1), p.65-75 |
issn | 0969-7128 1476-5462 |
language | eng |
recordid | cdi_proquest_miscellaneous_1664208445 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; SpringerNature Complete Journals |
subjects | 13 13/1 14/63 38/91 49/39 631/67/1504/1885 64/60 82/80 96/106 Analysis Animal experimentation Animals Antibodies Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Biological activity Biological response modifiers Biomedical and Life Sciences Biomedicine Brain tumors Bystander Effect Carcinoma Cell Biology Cell Line, Tumor Cloning Colon Colon cancer Colonic Neoplasms - immunology Colonic Neoplasms - pathology Colonic Neoplasms - therapy Colorectal cancer Drug metabolism Drug therapy Gene Expression Gene Therapy Genes Genetic aspects Genetic Vectors Glioma Gliomas Green Fluorescent Proteins - biosynthesis Health aspects Human Genetics Infection Infections Interferon Interferon Type I - pharmacology Interferon Type I - therapeutic use Interferon-beta - secretion Mice, Inbred BALB C Nanotechnology Necrosis Neoplasm Transplantation Oncolysis Oncolytic viral therapy Oncolytic Virotherapy Oncolytic Viruses - genetics original-article Pattern recognition Properties RNA RNA sequencing RNA viruses Ruxolitinib Semliki Forest virus Semliki forest virus - genetics Signal transduction STAT1 Transcription Factor - metabolism Surgery Transfection Transplantation Treatment Outcome Tumors Virus diseases Viruses Xenografts β-Interferon |
title | Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clonal%20variation%20in%20interferon%20response%20determines%20the%20outcome%20of%20oncolytic%20virotherapy%20in%20mouse%20CT26%20colon%20carcinoma%20model&rft.jtitle=Gene%20therapy&rft.au=Ruotsalainen,%20J%20J&rft.date=2015-01-01&rft.volume=22&rft.issue=1&rft.spage=65&rft.epage=75&rft.pages=65-75&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/gt.2014.83&rft_dat=%3Cgale_proqu%3EA610205655%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1643149840&rft_id=info:pmid/25231172&rft_galeid=A610205655&rfr_iscdi=true |