Complete Perchlorate Reduction Using Methane as the Sole Electron Donor and Carbon Source

Using a CH4-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO4 –) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO3 –) and nitrite (NO2 –) surface loadings on ClO4 – reduction and on the biofi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2015-02, Vol.49 (4), p.2341-2349
Hauptverfasser: Luo, Yi-Hao, Chen, Ran, Wen, Li-Lian, Meng, Fan, Zhang, Yin, Lai, Chun-Yu, Rittmann, Bruce E, Zhao, He-Ping, Zheng, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2349
container_issue 4
container_start_page 2341
container_title Environmental science & technology
container_volume 49
creator Luo, Yi-Hao
Chen, Ran
Wen, Li-Lian
Meng, Fan
Zhang, Yin
Lai, Chun-Yu
Rittmann, Bruce E
Zhao, He-Ping
Zheng, Ping
description Using a CH4-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO4 –) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO3 –) and nitrite (NO2 –) surface loadings on ClO4 – reduction and on the biofilm community’s mechanism for ClO4 – reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO4 – to a nondetectable level using CH4 as the only electron donor and carbon source when CH4 delivery was not limiting; NO3 – was completely reduced as well when its surface loading was ≤0.32 g N/m2-d. When CH4 delivery was limiting, NO3 – inhibited ClO4 – reduction by competing for the scarce electron donor. NO2 – inhibited ClO4 – reduction when its surface loading was ≥0.10 g N/m2-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO4 –-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO4 – reduction by the MBfR biofilm involved chlorite (ClO2 –) dismutation to generate the O2 needed as a cosubstrate for the mono-oxygenation of CH4.
doi_str_mv 10.1021/es504990m
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664207948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664207948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-e140af960f8d09fd1167fe3428ffc387dba6e79ea514e63bee6319eade7112fa3</originalsourceid><addsrcrecordid>eNplkE1LxDAQhoMo7rp68A9IQAQ9VCf9SJuj1PUDVhTXBT2VNJ24u7TNmrQH_72RXUX0kMnM8PDOy0vIIYNzBiG7QJdALAQ0W2TIkhCCJEvYNhkCsCgQEX8ZkD3nlgAQRpDtkkGYJCL2b0hec9OsauyQPqJV89pY6fsnrHrVLUxLZ27RvtF77OayRSod7eZIp6ZGOq5RddYjV6Y1lsq2orm0pV9MTW8V7pMdLWuHB5t_RGbX4-f8Npg83Nzll5NARinvAmQxSC046KwCoSvGeKoxisNMaxVlaVVKjqlAmbAYeVSiL8yPFaaMhVpGI3K61l1Z896j64pm4RTWtTdselcwzuMQUhFnHj3-gy691da781SSAeepCD11tqaUNc5Z1MXKLhppPwoGxVfexU_enj3aKPZlg9UP-R2wB07WgFTu17V_Qp8LooZh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658066792</pqid></control><display><type>article</type><title>Complete Perchlorate Reduction Using Methane as the Sole Electron Donor and Carbon Source</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Luo, Yi-Hao ; Chen, Ran ; Wen, Li-Lian ; Meng, Fan ; Zhang, Yin ; Lai, Chun-Yu ; Rittmann, Bruce E ; Zhao, He-Ping ; Zheng, Ping</creator><creatorcontrib>Luo, Yi-Hao ; Chen, Ran ; Wen, Li-Lian ; Meng, Fan ; Zhang, Yin ; Lai, Chun-Yu ; Rittmann, Bruce E ; Zhao, He-Ping ; Zheng, Ping</creatorcontrib><description>Using a CH4-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO4 –) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO3 –) and nitrite (NO2 –) surface loadings on ClO4 – reduction and on the biofilm community’s mechanism for ClO4 – reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO4 – to a nondetectable level using CH4 as the only electron donor and carbon source when CH4 delivery was not limiting; NO3 – was completely reduced as well when its surface loading was ≤0.32 g N/m2-d. When CH4 delivery was limiting, NO3 – inhibited ClO4 – reduction by competing for the scarce electron donor. NO2 – inhibited ClO4 – reduction when its surface loading was ≥0.10 g N/m2-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO4 –-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO4 – reduction by the MBfR biofilm involved chlorite (ClO2 –) dismutation to generate the O2 needed as a cosubstrate for the mono-oxygenation of CH4.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es504990m</identifier><identifier>PMID: 25594559</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anaerobiosis ; Archaea ; Archaea - genetics ; Archaea - metabolism ; Bacteria - genetics ; Bacteria - metabolism ; Biofilms ; Bioreactors - microbiology ; Carbon - chemistry ; Denitrification ; Electrons ; Gene Expression Regulation ; Membranes, Artificial ; Methane ; Methane - chemistry ; Methane - metabolism ; Microbial Consortia - physiology ; Nitrates - metabolism ; Oxidation ; Oxidation-Reduction ; Perchlorates - chemistry ; Perchlorates - metabolism ; Permeability ; RNA, Ribosomal, 16S ; Toxicity</subject><ispartof>Environmental science &amp; technology, 2015-02, Vol.49 (4), p.2341-2349</ispartof><rights>Copyright American Chemical Society Feb 17, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-e140af960f8d09fd1167fe3428ffc387dba6e79ea514e63bee6319eade7112fa3</citedby><cites>FETCH-LOGICAL-a376t-e140af960f8d09fd1167fe3428ffc387dba6e79ea514e63bee6319eade7112fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es504990m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es504990m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25594559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Yi-Hao</creatorcontrib><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Wen, Li-Lian</creatorcontrib><creatorcontrib>Meng, Fan</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Lai, Chun-Yu</creatorcontrib><creatorcontrib>Rittmann, Bruce E</creatorcontrib><creatorcontrib>Zhao, He-Ping</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><title>Complete Perchlorate Reduction Using Methane as the Sole Electron Donor and Carbon Source</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Using a CH4-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO4 –) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO3 –) and nitrite (NO2 –) surface loadings on ClO4 – reduction and on the biofilm community’s mechanism for ClO4 – reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO4 – to a nondetectable level using CH4 as the only electron donor and carbon source when CH4 delivery was not limiting; NO3 – was completely reduced as well when its surface loading was ≤0.32 g N/m2-d. When CH4 delivery was limiting, NO3 – inhibited ClO4 – reduction by competing for the scarce electron donor. NO2 – inhibited ClO4 – reduction when its surface loading was ≥0.10 g N/m2-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO4 –-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO4 – reduction by the MBfR biofilm involved chlorite (ClO2 –) dismutation to generate the O2 needed as a cosubstrate for the mono-oxygenation of CH4.</description><subject>Anaerobiosis</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Archaea - metabolism</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biofilms</subject><subject>Bioreactors - microbiology</subject><subject>Carbon - chemistry</subject><subject>Denitrification</subject><subject>Electrons</subject><subject>Gene Expression Regulation</subject><subject>Membranes, Artificial</subject><subject>Methane</subject><subject>Methane - chemistry</subject><subject>Methane - metabolism</subject><subject>Microbial Consortia - physiology</subject><subject>Nitrates - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Perchlorates - chemistry</subject><subject>Perchlorates - metabolism</subject><subject>Permeability</subject><subject>RNA, Ribosomal, 16S</subject><subject>Toxicity</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE1LxDAQhoMo7rp68A9IQAQ9VCf9SJuj1PUDVhTXBT2VNJ24u7TNmrQH_72RXUX0kMnM8PDOy0vIIYNzBiG7QJdALAQ0W2TIkhCCJEvYNhkCsCgQEX8ZkD3nlgAQRpDtkkGYJCL2b0hec9OsauyQPqJV89pY6fsnrHrVLUxLZ27RvtF77OayRSod7eZIp6ZGOq5RddYjV6Y1lsq2orm0pV9MTW8V7pMdLWuHB5t_RGbX4-f8Npg83Nzll5NARinvAmQxSC046KwCoSvGeKoxisNMaxVlaVVKjqlAmbAYeVSiL8yPFaaMhVpGI3K61l1Z896j64pm4RTWtTdselcwzuMQUhFnHj3-gy691da781SSAeepCD11tqaUNc5Z1MXKLhppPwoGxVfexU_enj3aKPZlg9UP-R2wB07WgFTu17V_Qp8LooZh</recordid><startdate>20150217</startdate><enddate>20150217</enddate><creator>Luo, Yi-Hao</creator><creator>Chen, Ran</creator><creator>Wen, Li-Lian</creator><creator>Meng, Fan</creator><creator>Zhang, Yin</creator><creator>Lai, Chun-Yu</creator><creator>Rittmann, Bruce E</creator><creator>Zhao, He-Ping</creator><creator>Zheng, Ping</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20150217</creationdate><title>Complete Perchlorate Reduction Using Methane as the Sole Electron Donor and Carbon Source</title><author>Luo, Yi-Hao ; Chen, Ran ; Wen, Li-Lian ; Meng, Fan ; Zhang, Yin ; Lai, Chun-Yu ; Rittmann, Bruce E ; Zhao, He-Ping ; Zheng, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-e140af960f8d09fd1167fe3428ffc387dba6e79ea514e63bee6319eade7112fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anaerobiosis</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Archaea - metabolism</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biofilms</topic><topic>Bioreactors - microbiology</topic><topic>Carbon - chemistry</topic><topic>Denitrification</topic><topic>Electrons</topic><topic>Gene Expression Regulation</topic><topic>Membranes, Artificial</topic><topic>Methane</topic><topic>Methane - chemistry</topic><topic>Methane - metabolism</topic><topic>Microbial Consortia - physiology</topic><topic>Nitrates - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Perchlorates - chemistry</topic><topic>Perchlorates - metabolism</topic><topic>Permeability</topic><topic>RNA, Ribosomal, 16S</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yi-Hao</creatorcontrib><creatorcontrib>Chen, Ran</creatorcontrib><creatorcontrib>Wen, Li-Lian</creatorcontrib><creatorcontrib>Meng, Fan</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Lai, Chun-Yu</creatorcontrib><creatorcontrib>Rittmann, Bruce E</creatorcontrib><creatorcontrib>Zhao, He-Ping</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yi-Hao</au><au>Chen, Ran</au><au>Wen, Li-Lian</au><au>Meng, Fan</au><au>Zhang, Yin</au><au>Lai, Chun-Yu</au><au>Rittmann, Bruce E</au><au>Zhao, He-Ping</au><au>Zheng, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Perchlorate Reduction Using Methane as the Sole Electron Donor and Carbon Source</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2015-02-17</date><risdate>2015</risdate><volume>49</volume><issue>4</issue><spage>2341</spage><epage>2349</epage><pages>2341-2349</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Using a CH4-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO4 –) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO3 –) and nitrite (NO2 –) surface loadings on ClO4 – reduction and on the biofilm community’s mechanism for ClO4 – reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO4 – to a nondetectable level using CH4 as the only electron donor and carbon source when CH4 delivery was not limiting; NO3 – was completely reduced as well when its surface loading was ≤0.32 g N/m2-d. When CH4 delivery was limiting, NO3 – inhibited ClO4 – reduction by competing for the scarce electron donor. NO2 – inhibited ClO4 – reduction when its surface loading was ≥0.10 g N/m2-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO4 –-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO4 – reduction by the MBfR biofilm involved chlorite (ClO2 –) dismutation to generate the O2 needed as a cosubstrate for the mono-oxygenation of CH4.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25594559</pmid><doi>10.1021/es504990m</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2015-02, Vol.49 (4), p.2341-2349
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1664207948
source MEDLINE; American Chemical Society Journals
subjects Anaerobiosis
Archaea
Archaea - genetics
Archaea - metabolism
Bacteria - genetics
Bacteria - metabolism
Biofilms
Bioreactors - microbiology
Carbon - chemistry
Denitrification
Electrons
Gene Expression Regulation
Membranes, Artificial
Methane
Methane - chemistry
Methane - metabolism
Microbial Consortia - physiology
Nitrates - metabolism
Oxidation
Oxidation-Reduction
Perchlorates - chemistry
Perchlorates - metabolism
Permeability
RNA, Ribosomal, 16S
Toxicity
title Complete Perchlorate Reduction Using Methane as the Sole Electron Donor and Carbon Source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Perchlorate%20Reduction%20Using%20Methane%20as%20the%20Sole%20Electron%20Donor%20and%20Carbon%20Source&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Luo,%20Yi-Hao&rft.date=2015-02-17&rft.volume=49&rft.issue=4&rft.spage=2341&rft.epage=2349&rft.pages=2341-2349&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es504990m&rft_dat=%3Cproquest_cross%3E1664207948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658066792&rft_id=info:pmid/25594559&rfr_iscdi=true