A spike-timing mechanism for action selection
In Drosophila melanogaster , descending interneurons known as giant fibers (GFs) are associated with escape behavior. The authors demonstrate that a synthetic looming predator stimulus can trigger GF-mediated short escape and parallel circuit–mediated long escape modes, and the relative spike timing...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2014-07, Vol.17 (7), p.962-970 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 970 |
---|---|
container_issue | 7 |
container_start_page | 962 |
container_title | Nature neuroscience |
container_volume | 17 |
creator | von Reyn, Catherine R Breads, Patrick Peek, Martin Y Zheng, Grace Zhiyu Williamson, W Ryan Yee, Alyson L Leonardo, Anthony Card, Gwyneth M |
description | In
Drosophila melanogaster
, descending interneurons known as giant fibers (GFs) are associated with escape behavior. The authors demonstrate that a synthetic looming predator stimulus can trigger GF-mediated short escape and parallel circuit–mediated long escape modes, and the relative spike timing between these circuits determines which escape mode is elicited.
We discovered a bimodal behavior in the genetically tractable organism
Drosophila melanogaster
that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output. |
doi_str_mv | 10.1038/nn.3741 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664206337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A376509831</galeid><sourcerecordid>A376509831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-14203f8bf42e796cf905c86b3a77a861ec8542ef0fac46477f25b154a246d0393</originalsourceid><addsrcrecordid>eNqFkVtLHDEUx0OpVN0Wv0EZ6IP1YbbJ5DqPi7QqCEIvzyGbPVljZzLbZAb02_es2tqVguQhh3N-539uhBwxOmeUm08pzbkW7BU5YFKomulGvUabtrpWjVT75LCUG0qplqZ9Q_Yb0VKDiQekXlRlE39CPcY-pnXVg792KZa-CkOunB_jkKoCHdxbb8lecF2Bd4__jPz48vn76Xl9eXV2cbq4rD1WH2smGsqDWQbRgG6VDy2V3qgld1o7oxh4IzEUaHBeKKF1aOQSG3eNUCvKWz4jHx90N3n4NUEZbR-Lh65zCYapWKYUllCc65dRKRg3vMGOZuTDM_RmmHLCQVBQKtoa3NcTtXYd2JjCMGbnt6J2wbWSiHGG1Pw_FL4V9NEPCUJE_07CyU4CMiPcjms3lWIvvn3dZY8fWJ-HUjIEu8mxd_nOMmq397Yp2e29kXz_ONK07GH1l_tz4Kf1FAylNeR_Zn6m9RuQcqyD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656098097</pqid></control><display><type>article</type><title>A spike-timing mechanism for action selection</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>von Reyn, Catherine R ; Breads, Patrick ; Peek, Martin Y ; Zheng, Grace Zhiyu ; Williamson, W Ryan ; Yee, Alyson L ; Leonardo, Anthony ; Card, Gwyneth M</creator><creatorcontrib>von Reyn, Catherine R ; Breads, Patrick ; Peek, Martin Y ; Zheng, Grace Zhiyu ; Williamson, W Ryan ; Yee, Alyson L ; Leonardo, Anthony ; Card, Gwyneth M</creatorcontrib><description>In
Drosophila melanogaster
, descending interneurons known as giant fibers (GFs) are associated with escape behavior. The authors demonstrate that a synthetic looming predator stimulus can trigger GF-mediated short escape and parallel circuit–mediated long escape modes, and the relative spike timing between these circuits determines which escape mode is elicited.
We discovered a bimodal behavior in the genetically tractable organism
Drosophila melanogaster
that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3741</identifier><identifier>PMID: 24908103</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/2629/1409 ; 631/378/2632 ; 631/443/376 ; 64 ; 64/24 ; 9/74 ; Algorithms ; Animal Genetics and Genomics ; Animals ; Behavior ; Behavior, Animal - physiology ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Calcium Signaling - physiology ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - physiology ; Electrophysiological Phenomena - physiology ; Escape Reaction - physiology ; Female ; Flight, Animal - physiology ; Genetic aspects ; Immunohistochemistry ; Insects ; Invertebrates ; Models, Neurological ; Models, Psychological ; Nerve Net - physiology ; Nervous system ; Neurobiology ; Neurons ; Neurosciences ; Odonata ; Photic Stimulation ; Physiological aspects ; Predatory Behavior</subject><ispartof>Nature neuroscience, 2014-07, Vol.17 (7), p.962-970</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-14203f8bf42e796cf905c86b3a77a861ec8542ef0fac46477f25b154a246d0393</citedby><cites>FETCH-LOGICAL-c546t-14203f8bf42e796cf905c86b3a77a861ec8542ef0fac46477f25b154a246d0393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3741$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3741$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24908103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>von Reyn, Catherine R</creatorcontrib><creatorcontrib>Breads, Patrick</creatorcontrib><creatorcontrib>Peek, Martin Y</creatorcontrib><creatorcontrib>Zheng, Grace Zhiyu</creatorcontrib><creatorcontrib>Williamson, W Ryan</creatorcontrib><creatorcontrib>Yee, Alyson L</creatorcontrib><creatorcontrib>Leonardo, Anthony</creatorcontrib><creatorcontrib>Card, Gwyneth M</creatorcontrib><title>A spike-timing mechanism for action selection</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>In
Drosophila melanogaster
, descending interneurons known as giant fibers (GFs) are associated with escape behavior. The authors demonstrate that a synthetic looming predator stimulus can trigger GF-mediated short escape and parallel circuit–mediated long escape modes, and the relative spike timing between these circuits determines which escape mode is elicited.
We discovered a bimodal behavior in the genetically tractable organism
Drosophila melanogaster
that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output.</description><subject>631/378/2629/1409</subject><subject>631/378/2632</subject><subject>631/443/376</subject><subject>64</subject><subject>64/24</subject><subject>9/74</subject><subject>Algorithms</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavior</subject><subject>Behavior, Animal - physiology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Calcium Signaling - physiology</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - physiology</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>Escape Reaction - physiology</subject><subject>Female</subject><subject>Flight, Animal - physiology</subject><subject>Genetic aspects</subject><subject>Immunohistochemistry</subject><subject>Insects</subject><subject>Invertebrates</subject><subject>Models, Neurological</subject><subject>Models, Psychological</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Odonata</subject><subject>Photic Stimulation</subject><subject>Physiological aspects</subject><subject>Predatory Behavior</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkVtLHDEUx0OpVN0Wv0EZ6IP1YbbJ5DqPi7QqCEIvzyGbPVljZzLbZAb02_es2tqVguQhh3N-539uhBwxOmeUm08pzbkW7BU5YFKomulGvUabtrpWjVT75LCUG0qplqZ9Q_Yb0VKDiQekXlRlE39CPcY-pnXVg792KZa-CkOunB_jkKoCHdxbb8lecF2Bd4__jPz48vn76Xl9eXV2cbq4rD1WH2smGsqDWQbRgG6VDy2V3qgld1o7oxh4IzEUaHBeKKF1aOQSG3eNUCvKWz4jHx90N3n4NUEZbR-Lh65zCYapWKYUllCc65dRKRg3vMGOZuTDM_RmmHLCQVBQKtoa3NcTtXYd2JjCMGbnt6J2wbWSiHGG1Pw_FL4V9NEPCUJE_07CyU4CMiPcjms3lWIvvn3dZY8fWJ-HUjIEu8mxd_nOMmq397Yp2e29kXz_ONK07GH1l_tz4Kf1FAylNeR_Zn6m9RuQcqyD</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>von Reyn, Catherine R</creator><creator>Breads, Patrick</creator><creator>Peek, Martin Y</creator><creator>Zheng, Grace Zhiyu</creator><creator>Williamson, W Ryan</creator><creator>Yee, Alyson L</creator><creator>Leonardo, Anthony</creator><creator>Card, Gwyneth M</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140701</creationdate><title>A spike-timing mechanism for action selection</title><author>von Reyn, Catherine R ; Breads, Patrick ; Peek, Martin Y ; Zheng, Grace Zhiyu ; Williamson, W Ryan ; Yee, Alyson L ; Leonardo, Anthony ; Card, Gwyneth M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-14203f8bf42e796cf905c86b3a77a861ec8542ef0fac46477f25b154a246d0393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/378/2629/1409</topic><topic>631/378/2632</topic><topic>631/443/376</topic><topic>64</topic><topic>64/24</topic><topic>9/74</topic><topic>Algorithms</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavior</topic><topic>Behavior, Animal - physiology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Calcium Signaling - physiology</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - physiology</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>Escape Reaction - physiology</topic><topic>Female</topic><topic>Flight, Animal - physiology</topic><topic>Genetic aspects</topic><topic>Immunohistochemistry</topic><topic>Insects</topic><topic>Invertebrates</topic><topic>Models, Neurological</topic><topic>Models, Psychological</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Odonata</topic><topic>Photic Stimulation</topic><topic>Physiological aspects</topic><topic>Predatory Behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Reyn, Catherine R</creatorcontrib><creatorcontrib>Breads, Patrick</creatorcontrib><creatorcontrib>Peek, Martin Y</creatorcontrib><creatorcontrib>Zheng, Grace Zhiyu</creatorcontrib><creatorcontrib>Williamson, W Ryan</creatorcontrib><creatorcontrib>Yee, Alyson L</creatorcontrib><creatorcontrib>Leonardo, Anthony</creatorcontrib><creatorcontrib>Card, Gwyneth M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Reyn, Catherine R</au><au>Breads, Patrick</au><au>Peek, Martin Y</au><au>Zheng, Grace Zhiyu</au><au>Williamson, W Ryan</au><au>Yee, Alyson L</au><au>Leonardo, Anthony</au><au>Card, Gwyneth M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spike-timing mechanism for action selection</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>17</volume><issue>7</issue><spage>962</spage><epage>970</epage><pages>962-970</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>In
Drosophila melanogaster
, descending interneurons known as giant fibers (GFs) are associated with escape behavior. The authors demonstrate that a synthetic looming predator stimulus can trigger GF-mediated short escape and parallel circuit–mediated long escape modes, and the relative spike timing between these circuits determines which escape mode is elicited.
We discovered a bimodal behavior in the genetically tractable organism
Drosophila melanogaster
that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>24908103</pmid><doi>10.1038/nn.3741</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2014-07, Vol.17 (7), p.962-970 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_1664206337 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/378/2629/1409 631/378/2632 631/443/376 64 64/24 9/74 Algorithms Animal Genetics and Genomics Animals Behavior Behavior, Animal - physiology Behavioral Sciences Biological Techniques Biomedicine Calcium Signaling - physiology Drosophila Drosophila melanogaster Drosophila melanogaster - physiology Electrophysiological Phenomena - physiology Escape Reaction - physiology Female Flight, Animal - physiology Genetic aspects Immunohistochemistry Insects Invertebrates Models, Neurological Models, Psychological Nerve Net - physiology Nervous system Neurobiology Neurons Neurosciences Odonata Photic Stimulation Physiological aspects Predatory Behavior |
title | A spike-timing mechanism for action selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spike-timing%20mechanism%20for%20action%20selection&rft.jtitle=Nature%20neuroscience&rft.au=von%20Reyn,%20Catherine%20R&rft.date=2014-07-01&rft.volume=17&rft.issue=7&rft.spage=962&rft.epage=970&rft.pages=962-970&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3741&rft_dat=%3Cgale_proqu%3EA376509831%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656098097&rft_id=info:pmid/24908103&rft_galeid=A376509831&rfr_iscdi=true |