Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome

Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2014-12, Vol.17 (12), p.1736-1743
Hauptverfasser: Lee, Yong-Seok, Ehninger, Dan, Zhou, Miou, Oh, Jun-Young, Kang, Minkyung, Kwak, Chuljung, Ryu, Hyun-Hee, Butz, Delana, Araki, Toshiyuki, Cai, Ying, Balaji, J, Sano, Yoshitake, Nam, Christine I, Kim, Hyong Kyu, Kaang, Bong-Kiun, Burger, Corinna, Neel, Benjamin G, Silva, Alcino J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1743
container_issue 12
container_start_page 1736
container_title Nature neuroscience
container_volume 17
creator Lee, Yong-Seok
Ehninger, Dan
Zhou, Miou
Oh, Jun-Young
Kang, Minkyung
Kwak, Chuljung
Ryu, Hyun-Hee
Butz, Delana
Araki, Toshiyuki
Cai, Ying
Balaji, J
Sano, Yoshitake
Nam, Christine I
Kim, Hyong Kyu
Kaang, Bong-Kiun
Burger, Corinna
Neel, Benjamin G
Silva, Alcino J
description Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kinase pathways, and pharmacological intervention that alters MEK-Ras function can alleviate physiological and behavioral deficits in the mouse models of NS. In Noonan syndrome (NS) 30–50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in Ptpn11 , which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele PTPN11 D61G in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras–extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult Ptpn11 D61G/+ mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.
doi_str_mv 10.1038/nn.3863
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664204927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A393517003</galeid><sourcerecordid>A393517003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c683t-118e5c2058264d98f7dbe685736c0b38a7cd322689eddb001716e1eafcef5a843</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhoMotlbxH0jAC_Vij_nYfOxlKVYLVcGPKy9CTjJ7TNkkNdkFz79vjq3WU7yQQDJknnmZGV6EnlKyooTr1ymtuJb8HjqkopcdVUzebzEZVCeZkAfoUa0XhBAl9PAQHTDBNdfDcIi-vQf33aZQI7bJ47mAnSOkGY-54AlsSSFtfqUixFy22MMYXJgrDgnHvFRot4ep4jziDzknm3DdJl9yhMfowWinCk9u3iP09fTNl5N33fnHt2cnx-edk5rPHaUahGNEaCZ7P-hR-TVILRSXjqy5tsp5zpjUA3i_JoQqKoGCHR2MwuqeH6GX17qXJf9YoM4mhupgmmyC1qGhUvaM9ANT_4EyRRTTRDb0-R30Ii8ltUEaJWTriChyS23sBCakMc_Fup2oOeYDF1QRwhu1-gfVjocYXE5tp-1_r-DVXkFjZvg5b-xSqzn7_GmffXHNupJrLTCayxKiLVtDidm5w6Rkdu5o5LObkZZ1BP-H-22H2_XUlkobKH_NfEfrCqn-vn4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656322070</pqid></control><display><type>article</type><title>Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Lee, Yong-Seok ; Ehninger, Dan ; Zhou, Miou ; Oh, Jun-Young ; Kang, Minkyung ; Kwak, Chuljung ; Ryu, Hyun-Hee ; Butz, Delana ; Araki, Toshiyuki ; Cai, Ying ; Balaji, J ; Sano, Yoshitake ; Nam, Christine I ; Kim, Hyong Kyu ; Kaang, Bong-Kiun ; Burger, Corinna ; Neel, Benjamin G ; Silva, Alcino J</creator><creatorcontrib>Lee, Yong-Seok ; Ehninger, Dan ; Zhou, Miou ; Oh, Jun-Young ; Kang, Minkyung ; Kwak, Chuljung ; Ryu, Hyun-Hee ; Butz, Delana ; Araki, Toshiyuki ; Cai, Ying ; Balaji, J ; Sano, Yoshitake ; Nam, Christine I ; Kim, Hyong Kyu ; Kaang, Bong-Kiun ; Burger, Corinna ; Neel, Benjamin G ; Silva, Alcino J</creatorcontrib><description>Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kinase pathways, and pharmacological intervention that alters MEK-Ras function can alleviate physiological and behavioral deficits in the mouse models of NS. In Noonan syndrome (NS) 30–50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in Ptpn11 , which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele PTPN11 D61G in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras–extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult Ptpn11 D61G/+ mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3863</identifier><identifier>PMID: 25383899</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1689/2608 ; 64/110 ; 64/60 ; 82/51 ; 9/30 ; 9/74 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Brain research ; Care and treatment ; Disease Models, Animal ; Female ; Genetic disorders ; Genotype &amp; phenotype ; Humans ; Kinases ; Learning - drug effects ; Learning - physiology ; Learning disabilities ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Lovastatin - pharmacology ; Lovastatin - therapeutic use ; Male ; Maze Learning - drug effects ; Maze Learning - physiology ; Memory ; Memory Disorders - drug therapy ; Memory Disorders - physiopathology ; Memory, Disorders of ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mutation ; Neurobiology ; Neurosciences ; Noonan syndrome ; Noonan Syndrome - drug therapy ; Noonan Syndrome - physiopathology ; Physiological aspects ; Random Allocation ; Rats ; Treatment Outcome</subject><ispartof>Nature neuroscience, 2014-12, Vol.17 (12), p.1736-1743</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c683t-118e5c2058264d98f7dbe685736c0b38a7cd322689eddb001716e1eafcef5a843</citedby><cites>FETCH-LOGICAL-c683t-118e5c2058264d98f7dbe685736c0b38a7cd322689eddb001716e1eafcef5a843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3863$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3863$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25383899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yong-Seok</creatorcontrib><creatorcontrib>Ehninger, Dan</creatorcontrib><creatorcontrib>Zhou, Miou</creatorcontrib><creatorcontrib>Oh, Jun-Young</creatorcontrib><creatorcontrib>Kang, Minkyung</creatorcontrib><creatorcontrib>Kwak, Chuljung</creatorcontrib><creatorcontrib>Ryu, Hyun-Hee</creatorcontrib><creatorcontrib>Butz, Delana</creatorcontrib><creatorcontrib>Araki, Toshiyuki</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Balaji, J</creatorcontrib><creatorcontrib>Sano, Yoshitake</creatorcontrib><creatorcontrib>Nam, Christine I</creatorcontrib><creatorcontrib>Kim, Hyong Kyu</creatorcontrib><creatorcontrib>Kaang, Bong-Kiun</creatorcontrib><creatorcontrib>Burger, Corinna</creatorcontrib><creatorcontrib>Neel, Benjamin G</creatorcontrib><creatorcontrib>Silva, Alcino J</creatorcontrib><title>Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kinase pathways, and pharmacological intervention that alters MEK-Ras function can alleviate physiological and behavioral deficits in the mouse models of NS. In Noonan syndrome (NS) 30–50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in Ptpn11 , which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele PTPN11 D61G in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras–extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult Ptpn11 D61G/+ mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.</description><subject>631/378/1689/2608</subject><subject>64/110</subject><subject>64/60</subject><subject>82/51</subject><subject>9/30</subject><subject>9/74</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Care and treatment</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Genetic disorders</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Kinases</subject><subject>Learning - drug effects</subject><subject>Learning - physiology</subject><subject>Learning disabilities</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Lovastatin - pharmacology</subject><subject>Lovastatin - therapeutic use</subject><subject>Male</subject><subject>Maze Learning - drug effects</subject><subject>Maze Learning - physiology</subject><subject>Memory</subject><subject>Memory Disorders - drug therapy</subject><subject>Memory Disorders - physiopathology</subject><subject>Memory, Disorders of</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mutation</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Noonan syndrome</subject><subject>Noonan Syndrome - drug therapy</subject><subject>Noonan Syndrome - physiopathology</subject><subject>Physiological aspects</subject><subject>Random Allocation</subject><subject>Rats</subject><subject>Treatment Outcome</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl1rFTEQhoMotlbxH0jAC_Vij_nYfOxlKVYLVcGPKy9CTjJ7TNkkNdkFz79vjq3WU7yQQDJknnmZGV6EnlKyooTr1ymtuJb8HjqkopcdVUzebzEZVCeZkAfoUa0XhBAl9PAQHTDBNdfDcIi-vQf33aZQI7bJ47mAnSOkGY-54AlsSSFtfqUixFy22MMYXJgrDgnHvFRot4ep4jziDzknm3DdJl9yhMfowWinCk9u3iP09fTNl5N33fnHt2cnx-edk5rPHaUahGNEaCZ7P-hR-TVILRSXjqy5tsp5zpjUA3i_JoQqKoGCHR2MwuqeH6GX17qXJf9YoM4mhupgmmyC1qGhUvaM9ANT_4EyRRTTRDb0-R30Ii8ltUEaJWTriChyS23sBCakMc_Fup2oOeYDF1QRwhu1-gfVjocYXE5tp-1_r-DVXkFjZvg5b-xSqzn7_GmffXHNupJrLTCayxKiLVtDidm5w6Rkdu5o5LObkZZ1BP-H-22H2_XUlkobKH_NfEfrCqn-vn4</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lee, Yong-Seok</creator><creator>Ehninger, Dan</creator><creator>Zhou, Miou</creator><creator>Oh, Jun-Young</creator><creator>Kang, Minkyung</creator><creator>Kwak, Chuljung</creator><creator>Ryu, Hyun-Hee</creator><creator>Butz, Delana</creator><creator>Araki, Toshiyuki</creator><creator>Cai, Ying</creator><creator>Balaji, J</creator><creator>Sano, Yoshitake</creator><creator>Nam, Christine I</creator><creator>Kim, Hyong Kyu</creator><creator>Kaang, Bong-Kiun</creator><creator>Burger, Corinna</creator><creator>Neel, Benjamin G</creator><creator>Silva, Alcino J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20141201</creationdate><title>Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome</title><author>Lee, Yong-Seok ; Ehninger, Dan ; Zhou, Miou ; Oh, Jun-Young ; Kang, Minkyung ; Kwak, Chuljung ; Ryu, Hyun-Hee ; Butz, Delana ; Araki, Toshiyuki ; Cai, Ying ; Balaji, J ; Sano, Yoshitake ; Nam, Christine I ; Kim, Hyong Kyu ; Kaang, Bong-Kiun ; Burger, Corinna ; Neel, Benjamin G ; Silva, Alcino J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c683t-118e5c2058264d98f7dbe685736c0b38a7cd322689eddb001716e1eafcef5a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/378/1689/2608</topic><topic>64/110</topic><topic>64/60</topic><topic>82/51</topic><topic>9/30</topic><topic>9/74</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Care and treatment</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Genetic disorders</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Kinases</topic><topic>Learning - drug effects</topic><topic>Learning - physiology</topic><topic>Learning disabilities</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Lovastatin - pharmacology</topic><topic>Lovastatin - therapeutic use</topic><topic>Male</topic><topic>Maze Learning - drug effects</topic><topic>Maze Learning - physiology</topic><topic>Memory</topic><topic>Memory Disorders - drug therapy</topic><topic>Memory Disorders - physiopathology</topic><topic>Memory, Disorders of</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mutation</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Noonan syndrome</topic><topic>Noonan Syndrome - drug therapy</topic><topic>Noonan Syndrome - physiopathology</topic><topic>Physiological aspects</topic><topic>Random Allocation</topic><topic>Rats</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yong-Seok</creatorcontrib><creatorcontrib>Ehninger, Dan</creatorcontrib><creatorcontrib>Zhou, Miou</creatorcontrib><creatorcontrib>Oh, Jun-Young</creatorcontrib><creatorcontrib>Kang, Minkyung</creatorcontrib><creatorcontrib>Kwak, Chuljung</creatorcontrib><creatorcontrib>Ryu, Hyun-Hee</creatorcontrib><creatorcontrib>Butz, Delana</creatorcontrib><creatorcontrib>Araki, Toshiyuki</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Balaji, J</creatorcontrib><creatorcontrib>Sano, Yoshitake</creatorcontrib><creatorcontrib>Nam, Christine I</creatorcontrib><creatorcontrib>Kim, Hyong Kyu</creatorcontrib><creatorcontrib>Kaang, Bong-Kiun</creatorcontrib><creatorcontrib>Burger, Corinna</creatorcontrib><creatorcontrib>Neel, Benjamin G</creatorcontrib><creatorcontrib>Silva, Alcino J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yong-Seok</au><au>Ehninger, Dan</au><au>Zhou, Miou</au><au>Oh, Jun-Young</au><au>Kang, Minkyung</au><au>Kwak, Chuljung</au><au>Ryu, Hyun-Hee</au><au>Butz, Delana</au><au>Araki, Toshiyuki</au><au>Cai, Ying</au><au>Balaji, J</au><au>Sano, Yoshitake</au><au>Nam, Christine I</au><au>Kim, Hyong Kyu</au><au>Kaang, Bong-Kiun</au><au>Burger, Corinna</au><au>Neel, Benjamin G</au><au>Silva, Alcino J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>17</volume><issue>12</issue><spage>1736</spage><epage>1743</epage><pages>1736-1743</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kinase pathways, and pharmacological intervention that alters MEK-Ras function can alleviate physiological and behavioral deficits in the mouse models of NS. In Noonan syndrome (NS) 30–50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in Ptpn11 , which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele PTPN11 D61G in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras–extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult Ptpn11 D61G/+ mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25383899</pmid><doi>10.1038/nn.3863</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2014-12, Vol.17 (12), p.1736-1743
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_1664204927
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/378/1689/2608
64/110
64/60
82/51
9/30
9/74
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedicine
Brain research
Care and treatment
Disease Models, Animal
Female
Genetic disorders
Genotype & phenotype
Humans
Kinases
Learning - drug effects
Learning - physiology
Learning disabilities
Long-Term Potentiation - drug effects
Long-Term Potentiation - physiology
Lovastatin - pharmacology
Lovastatin - therapeutic use
Male
Maze Learning - drug effects
Maze Learning - physiology
Memory
Memory Disorders - drug therapy
Memory Disorders - physiopathology
Memory, Disorders of
Mice
Mice, 129 Strain
Mice, Inbred C57BL
Mutation
Neurobiology
Neurosciences
Noonan syndrome
Noonan Syndrome - drug therapy
Noonan Syndrome - physiopathology
Physiological aspects
Random Allocation
Rats
Treatment Outcome
title Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20and%20treatment%20for%20learning%20and%20memory%20deficits%20in%20mouse%20models%20of%20Noonan%20syndrome&rft.jtitle=Nature%20neuroscience&rft.au=Lee,%20Yong-Seok&rft.date=2014-12-01&rft.volume=17&rft.issue=12&rft.spage=1736&rft.epage=1743&rft.pages=1736-1743&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3863&rft_dat=%3Cgale_proqu%3EA393517003%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656322070&rft_id=info:pmid/25383899&rft_galeid=A393517003&rfr_iscdi=true