Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome
Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kina...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2014-12, Vol.17 (12), p.1736-1743 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1743 |
---|---|
container_issue | 12 |
container_start_page | 1736 |
container_title | Nature neuroscience |
container_volume | 17 |
creator | Lee, Yong-Seok Ehninger, Dan Zhou, Miou Oh, Jun-Young Kang, Minkyung Kwak, Chuljung Ryu, Hyun-Hee Butz, Delana Araki, Toshiyuki Cai, Ying Balaji, J Sano, Yoshitake Nam, Christine I Kim, Hyong Kyu Kaang, Bong-Kiun Burger, Corinna Neel, Benjamin G Silva, Alcino J |
description | Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kinase pathways, and pharmacological intervention that alters MEK-Ras function can alleviate physiological and behavioral deficits in the mouse models of NS.
In Noonan syndrome (NS) 30–50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in
Ptpn11
, which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele
PTPN11
D61G
in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras–extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult
Ptpn11
D61G/+
mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS. |
doi_str_mv | 10.1038/nn.3863 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664204927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A393517003</galeid><sourcerecordid>A393517003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c683t-118e5c2058264d98f7dbe685736c0b38a7cd322689eddb001716e1eafcef5a843</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhoMotlbxH0jAC_Vij_nYfOxlKVYLVcGPKy9CTjJ7TNkkNdkFz79vjq3WU7yQQDJknnmZGV6EnlKyooTr1ymtuJb8HjqkopcdVUzebzEZVCeZkAfoUa0XhBAl9PAQHTDBNdfDcIi-vQf33aZQI7bJ47mAnSOkGY-54AlsSSFtfqUixFy22MMYXJgrDgnHvFRot4ep4jziDzknm3DdJl9yhMfowWinCk9u3iP09fTNl5N33fnHt2cnx-edk5rPHaUahGNEaCZ7P-hR-TVILRSXjqy5tsp5zpjUA3i_JoQqKoGCHR2MwuqeH6GX17qXJf9YoM4mhupgmmyC1qGhUvaM9ANT_4EyRRTTRDb0-R30Ii8ltUEaJWTriChyS23sBCakMc_Fup2oOeYDF1QRwhu1-gfVjocYXE5tp-1_r-DVXkFjZvg5b-xSqzn7_GmffXHNupJrLTCayxKiLVtDidm5w6Rkdu5o5LObkZZ1BP-H-22H2_XUlkobKH_NfEfrCqn-vn4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656322070</pqid></control><display><type>article</type><title>Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Lee, Yong-Seok ; Ehninger, Dan ; Zhou, Miou ; Oh, Jun-Young ; Kang, Minkyung ; Kwak, Chuljung ; Ryu, Hyun-Hee ; Butz, Delana ; Araki, Toshiyuki ; Cai, Ying ; Balaji, J ; Sano, Yoshitake ; Nam, Christine I ; Kim, Hyong Kyu ; Kaang, Bong-Kiun ; Burger, Corinna ; Neel, Benjamin G ; Silva, Alcino J</creator><creatorcontrib>Lee, Yong-Seok ; Ehninger, Dan ; Zhou, Miou ; Oh, Jun-Young ; Kang, Minkyung ; Kwak, Chuljung ; Ryu, Hyun-Hee ; Butz, Delana ; Araki, Toshiyuki ; Cai, Ying ; Balaji, J ; Sano, Yoshitake ; Nam, Christine I ; Kim, Hyong Kyu ; Kaang, Bong-Kiun ; Burger, Corinna ; Neel, Benjamin G ; Silva, Alcino J</creatorcontrib><description>Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kinase pathways, and pharmacological intervention that alters MEK-Ras function can alleviate physiological and behavioral deficits in the mouse models of NS.
In Noonan syndrome (NS) 30–50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in
Ptpn11
, which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele
PTPN11
D61G
in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras–extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult
Ptpn11
D61G/+
mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3863</identifier><identifier>PMID: 25383899</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1689/2608 ; 64/110 ; 64/60 ; 82/51 ; 9/30 ; 9/74 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Brain research ; Care and treatment ; Disease Models, Animal ; Female ; Genetic disorders ; Genotype & phenotype ; Humans ; Kinases ; Learning - drug effects ; Learning - physiology ; Learning disabilities ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Lovastatin - pharmacology ; Lovastatin - therapeutic use ; Male ; Maze Learning - drug effects ; Maze Learning - physiology ; Memory ; Memory Disorders - drug therapy ; Memory Disorders - physiopathology ; Memory, Disorders of ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mutation ; Neurobiology ; Neurosciences ; Noonan syndrome ; Noonan Syndrome - drug therapy ; Noonan Syndrome - physiopathology ; Physiological aspects ; Random Allocation ; Rats ; Treatment Outcome</subject><ispartof>Nature neuroscience, 2014-12, Vol.17 (12), p.1736-1743</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c683t-118e5c2058264d98f7dbe685736c0b38a7cd322689eddb001716e1eafcef5a843</citedby><cites>FETCH-LOGICAL-c683t-118e5c2058264d98f7dbe685736c0b38a7cd322689eddb001716e1eafcef5a843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3863$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3863$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25383899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yong-Seok</creatorcontrib><creatorcontrib>Ehninger, Dan</creatorcontrib><creatorcontrib>Zhou, Miou</creatorcontrib><creatorcontrib>Oh, Jun-Young</creatorcontrib><creatorcontrib>Kang, Minkyung</creatorcontrib><creatorcontrib>Kwak, Chuljung</creatorcontrib><creatorcontrib>Ryu, Hyun-Hee</creatorcontrib><creatorcontrib>Butz, Delana</creatorcontrib><creatorcontrib>Araki, Toshiyuki</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Balaji, J</creatorcontrib><creatorcontrib>Sano, Yoshitake</creatorcontrib><creatorcontrib>Nam, Christine I</creatorcontrib><creatorcontrib>Kim, Hyong Kyu</creatorcontrib><creatorcontrib>Kaang, Bong-Kiun</creatorcontrib><creatorcontrib>Burger, Corinna</creatorcontrib><creatorcontrib>Neel, Benjamin G</creatorcontrib><creatorcontrib>Silva, Alcino J</creatorcontrib><title>Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kinase pathways, and pharmacological intervention that alters MEK-Ras function can alleviate physiological and behavioral deficits in the mouse models of NS.
In Noonan syndrome (NS) 30–50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in
Ptpn11
, which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele
PTPN11
D61G
in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras–extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult
Ptpn11
D61G/+
mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.</description><subject>631/378/1689/2608</subject><subject>64/110</subject><subject>64/60</subject><subject>82/51</subject><subject>9/30</subject><subject>9/74</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Care and treatment</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Genetic disorders</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Kinases</subject><subject>Learning - drug effects</subject><subject>Learning - physiology</subject><subject>Learning disabilities</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Lovastatin - pharmacology</subject><subject>Lovastatin - therapeutic use</subject><subject>Male</subject><subject>Maze Learning - drug effects</subject><subject>Maze Learning - physiology</subject><subject>Memory</subject><subject>Memory Disorders - drug therapy</subject><subject>Memory Disorders - physiopathology</subject><subject>Memory, Disorders of</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mutation</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Noonan syndrome</subject><subject>Noonan Syndrome - drug therapy</subject><subject>Noonan Syndrome - physiopathology</subject><subject>Physiological aspects</subject><subject>Random Allocation</subject><subject>Rats</subject><subject>Treatment Outcome</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl1rFTEQhoMotlbxH0jAC_Vij_nYfOxlKVYLVcGPKy9CTjJ7TNkkNdkFz79vjq3WU7yQQDJknnmZGV6EnlKyooTr1ymtuJb8HjqkopcdVUzebzEZVCeZkAfoUa0XhBAl9PAQHTDBNdfDcIi-vQf33aZQI7bJ47mAnSOkGY-54AlsSSFtfqUixFy22MMYXJgrDgnHvFRot4ep4jziDzknm3DdJl9yhMfowWinCk9u3iP09fTNl5N33fnHt2cnx-edk5rPHaUahGNEaCZ7P-hR-TVILRSXjqy5tsp5zpjUA3i_JoQqKoGCHR2MwuqeH6GX17qXJf9YoM4mhupgmmyC1qGhUvaM9ANT_4EyRRTTRDb0-R30Ii8ltUEaJWTriChyS23sBCakMc_Fup2oOeYDF1QRwhu1-gfVjocYXE5tp-1_r-DVXkFjZvg5b-xSqzn7_GmffXHNupJrLTCayxKiLVtDidm5w6Rkdu5o5LObkZZ1BP-H-22H2_XUlkobKH_NfEfrCqn-vn4</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lee, Yong-Seok</creator><creator>Ehninger, Dan</creator><creator>Zhou, Miou</creator><creator>Oh, Jun-Young</creator><creator>Kang, Minkyung</creator><creator>Kwak, Chuljung</creator><creator>Ryu, Hyun-Hee</creator><creator>Butz, Delana</creator><creator>Araki, Toshiyuki</creator><creator>Cai, Ying</creator><creator>Balaji, J</creator><creator>Sano, Yoshitake</creator><creator>Nam, Christine I</creator><creator>Kim, Hyong Kyu</creator><creator>Kaang, Bong-Kiun</creator><creator>Burger, Corinna</creator><creator>Neel, Benjamin G</creator><creator>Silva, Alcino J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20141201</creationdate><title>Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome</title><author>Lee, Yong-Seok ; Ehninger, Dan ; Zhou, Miou ; Oh, Jun-Young ; Kang, Minkyung ; Kwak, Chuljung ; Ryu, Hyun-Hee ; Butz, Delana ; Araki, Toshiyuki ; Cai, Ying ; Balaji, J ; Sano, Yoshitake ; Nam, Christine I ; Kim, Hyong Kyu ; Kaang, Bong-Kiun ; Burger, Corinna ; Neel, Benjamin G ; Silva, Alcino J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c683t-118e5c2058264d98f7dbe685736c0b38a7cd322689eddb001716e1eafcef5a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/378/1689/2608</topic><topic>64/110</topic><topic>64/60</topic><topic>82/51</topic><topic>9/30</topic><topic>9/74</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Care and treatment</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Genetic disorders</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Kinases</topic><topic>Learning - drug effects</topic><topic>Learning - physiology</topic><topic>Learning disabilities</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Lovastatin - pharmacology</topic><topic>Lovastatin - therapeutic use</topic><topic>Male</topic><topic>Maze Learning - drug effects</topic><topic>Maze Learning - physiology</topic><topic>Memory</topic><topic>Memory Disorders - drug therapy</topic><topic>Memory Disorders - physiopathology</topic><topic>Memory, Disorders of</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mutation</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Noonan syndrome</topic><topic>Noonan Syndrome - drug therapy</topic><topic>Noonan Syndrome - physiopathology</topic><topic>Physiological aspects</topic><topic>Random Allocation</topic><topic>Rats</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yong-Seok</creatorcontrib><creatorcontrib>Ehninger, Dan</creatorcontrib><creatorcontrib>Zhou, Miou</creatorcontrib><creatorcontrib>Oh, Jun-Young</creatorcontrib><creatorcontrib>Kang, Minkyung</creatorcontrib><creatorcontrib>Kwak, Chuljung</creatorcontrib><creatorcontrib>Ryu, Hyun-Hee</creatorcontrib><creatorcontrib>Butz, Delana</creatorcontrib><creatorcontrib>Araki, Toshiyuki</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Balaji, J</creatorcontrib><creatorcontrib>Sano, Yoshitake</creatorcontrib><creatorcontrib>Nam, Christine I</creatorcontrib><creatorcontrib>Kim, Hyong Kyu</creatorcontrib><creatorcontrib>Kaang, Bong-Kiun</creatorcontrib><creatorcontrib>Burger, Corinna</creatorcontrib><creatorcontrib>Neel, Benjamin G</creatorcontrib><creatorcontrib>Silva, Alcino J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yong-Seok</au><au>Ehninger, Dan</au><au>Zhou, Miou</au><au>Oh, Jun-Young</au><au>Kang, Minkyung</au><au>Kwak, Chuljung</au><au>Ryu, Hyun-Hee</au><au>Butz, Delana</au><au>Araki, Toshiyuki</au><au>Cai, Ying</au><au>Balaji, J</au><au>Sano, Yoshitake</au><au>Nam, Christine I</au><au>Kim, Hyong Kyu</au><au>Kaang, Bong-Kiun</au><au>Burger, Corinna</au><au>Neel, Benjamin G</au><au>Silva, Alcino J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>17</volume><issue>12</issue><spage>1736</spage><epage>1743</epage><pages>1736-1743</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Noonan syndrome (NS) is an autosomal dominant genetic disease that is co-morbid with cognitive deficits in a subset of patients. Using mouse models of NS, a study now shows that the synaptic plasticity and memory deficits in mouse models of NS are due primarily to the dysfunction in the MEK-Erk kinase pathways, and pharmacological intervention that alters MEK-Ras function can alleviate physiological and behavioral deficits in the mouse models of NS.
In Noonan syndrome (NS) 30–50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in
Ptpn11
, which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele
PTPN11
D61G
in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras–extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult
Ptpn11
D61G/+
mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25383899</pmid><doi>10.1038/nn.3863</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2014-12, Vol.17 (12), p.1736-1743 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_1664204927 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/378/1689/2608 64/110 64/60 82/51 9/30 9/74 Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedicine Brain research Care and treatment Disease Models, Animal Female Genetic disorders Genotype & phenotype Humans Kinases Learning - drug effects Learning - physiology Learning disabilities Long-Term Potentiation - drug effects Long-Term Potentiation - physiology Lovastatin - pharmacology Lovastatin - therapeutic use Male Maze Learning - drug effects Maze Learning - physiology Memory Memory Disorders - drug therapy Memory Disorders - physiopathology Memory, Disorders of Mice Mice, 129 Strain Mice, Inbred C57BL Mutation Neurobiology Neurosciences Noonan syndrome Noonan Syndrome - drug therapy Noonan Syndrome - physiopathology Physiological aspects Random Allocation Rats Treatment Outcome |
title | Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20and%20treatment%20for%20learning%20and%20memory%20deficits%20in%20mouse%20models%20of%20Noonan%20syndrome&rft.jtitle=Nature%20neuroscience&rft.au=Lee,%20Yong-Seok&rft.date=2014-12-01&rft.volume=17&rft.issue=12&rft.spage=1736&rft.epage=1743&rft.pages=1736-1743&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3863&rft_dat=%3Cgale_proqu%3EA393517003%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656322070&rft_id=info:pmid/25383899&rft_galeid=A393517003&rfr_iscdi=true |