Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones

Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology. Bioenergy 2015-03, Vol.7 (2), p.386-404
Hauptverfasser: Głowacka, Katarzyna, Clark, Lindsay V., Adhikari, Shivani, Peng, Junhua, Stewart, J. Ryan, Nishiwaki, Aya, Yamada, Toshihiko, Jørgensen, Uffe, Hodkinson, Trevor R., Gifford, Justin, Juvik, John A., Sacks, Erik J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue 2
container_start_page 386
container_title Global change biology. Bioenergy
container_volume 7
creator Głowacka, Katarzyna
Clark, Lindsay V.
Adhikari, Shivani
Peng, Junhua
Stewart, J. Ryan
Nishiwaki, Aya
Yamada, Toshihiko
Jørgensen, Uffe
Hodkinson, Trevor R.
Gifford, Justin
Juvik, John A.
Sacks, Erik J.
description Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers.
doi_str_mv 10.1111/gcbb.12166
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664201049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299129701</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3456-1c96fb869e3836a838c4fa5b4e5fffd50d2cf71c31b3cb91a81d56a78e391f163</originalsourceid><addsrcrecordid>eNpdkc9OxCAQxhujiX8vPgGJFy-rTGlpOepGVxONFz0TSocumy6s0Gp8AV_Bq8-iLya6epHLDMNvvgzzZdkh0BNI57TTTXMCOXC-ke1AVVYTqGi1-Zdzwbaz3RgXlPKSg9jJXmfocLCaPKlg1WC9I9aRWxu1csN8jB_vn28f753t0hXHSJRryTBHYpcrHwblNBJvCMbBLlO360j3q9fauH4e5gHj3PdtJMaHVDcGA7rBrnnde4dxP9syqo948Bv3sofLi_vp1eTmbnY9PbuZLFhR8glowU1Tc4GsZlzVrNaFUWVTYGmMaUva5tpUoBk0TDcCVA1tyVVVIxNggLO97Hituwr-cUxjy2X6Kva9cujHKNPiipwCLURCj_6hCz8Gl6aTeS4E5KKikChYU8-2xxe5CmkP4UUCld9-yG8_5I8fcjY9P__J2Bdqc4Um</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299129701</pqid></control><display><type>article</type><title>Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones</title><source>Wiley Online Library Open Access</source><creator>Głowacka, Katarzyna ; Clark, Lindsay V. ; Adhikari, Shivani ; Peng, Junhua ; Stewart, J. Ryan ; Nishiwaki, Aya ; Yamada, Toshihiko ; Jørgensen, Uffe ; Hodkinson, Trevor R. ; Gifford, Justin ; Juvik, John A. ; Sacks, Erik J.</creator><creatorcontrib>Głowacka, Katarzyna ; Clark, Lindsay V. ; Adhikari, Shivani ; Peng, Junhua ; Stewart, J. Ryan ; Nishiwaki, Aya ; Yamada, Toshihiko ; Jørgensen, Uffe ; Hodkinson, Trevor R. ; Gifford, Justin ; Juvik, John A. ; Sacks, Erik J.</creatorcontrib><description>Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers.</description><identifier>ISSN: 1757-1693</identifier><identifier>EISSN: 1757-1707</identifier><identifier>DOI: 10.1111/gcbb.12166</identifier><language>eng</language><publisher>Oxford: John Wiley &amp; Sons, Inc</publisher><subject>Cabaret ; Chloroplasts ; Crop diseases ; Crops ; Cultivars ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Errors ; Genetic crosses ; Genetic distance ; Genetic diversity ; Genotype &amp; phenotype ; Genotyping ; genotyping error ; interspecific hybrids ; Markers ; Miscanthus ; Miscanthus sacchariflorus ; Miscanthus sinensis ; Offspring ; Plant propagation ; Polymorphism ; Progeny ; RAD‐seq ; Renewable energy ; Similarity ; SSR</subject><ispartof>Global change biology. Bioenergy, 2015-03, Vol.7 (2), p.386-404</ispartof><rights>2013 John Wiley &amp; Sons Ltd</rights><rights>2015. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcbb.12166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcbb.12166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11542,27903,27904,45553,45554,46031,46455</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12166$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Głowacka, Katarzyna</creatorcontrib><creatorcontrib>Clark, Lindsay V.</creatorcontrib><creatorcontrib>Adhikari, Shivani</creatorcontrib><creatorcontrib>Peng, Junhua</creatorcontrib><creatorcontrib>Stewart, J. Ryan</creatorcontrib><creatorcontrib>Nishiwaki, Aya</creatorcontrib><creatorcontrib>Yamada, Toshihiko</creatorcontrib><creatorcontrib>Jørgensen, Uffe</creatorcontrib><creatorcontrib>Hodkinson, Trevor R.</creatorcontrib><creatorcontrib>Gifford, Justin</creatorcontrib><creatorcontrib>Juvik, John A.</creatorcontrib><creatorcontrib>Sacks, Erik J.</creatorcontrib><title>Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones</title><title>Global change biology. Bioenergy</title><description>Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers.</description><subject>Cabaret</subject><subject>Chloroplasts</subject><subject>Crop diseases</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Errors</subject><subject>Genetic crosses</subject><subject>Genetic distance</subject><subject>Genetic diversity</subject><subject>Genotype &amp; phenotype</subject><subject>Genotyping</subject><subject>genotyping error</subject><subject>interspecific hybrids</subject><subject>Markers</subject><subject>Miscanthus</subject><subject>Miscanthus sacchariflorus</subject><subject>Miscanthus sinensis</subject><subject>Offspring</subject><subject>Plant propagation</subject><subject>Polymorphism</subject><subject>Progeny</subject><subject>RAD‐seq</subject><subject>Renewable energy</subject><subject>Similarity</subject><subject>SSR</subject><issn>1757-1693</issn><issn>1757-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc9OxCAQxhujiX8vPgGJFy-rTGlpOepGVxONFz0TSocumy6s0Gp8AV_Bq8-iLya6epHLDMNvvgzzZdkh0BNI57TTTXMCOXC-ke1AVVYTqGi1-Zdzwbaz3RgXlPKSg9jJXmfocLCaPKlg1WC9I9aRWxu1csN8jB_vn28f753t0hXHSJRryTBHYpcrHwblNBJvCMbBLlO360j3q9fauH4e5gHj3PdtJMaHVDcGA7rBrnnde4dxP9syqo948Bv3sofLi_vp1eTmbnY9PbuZLFhR8glowU1Tc4GsZlzVrNaFUWVTYGmMaUva5tpUoBk0TDcCVA1tyVVVIxNggLO97Hituwr-cUxjy2X6Kva9cujHKNPiipwCLURCj_6hCz8Gl6aTeS4E5KKikChYU8-2xxe5CmkP4UUCld9-yG8_5I8fcjY9P__J2Bdqc4Um</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Głowacka, Katarzyna</creator><creator>Clark, Lindsay V.</creator><creator>Adhikari, Shivani</creator><creator>Peng, Junhua</creator><creator>Stewart, J. Ryan</creator><creator>Nishiwaki, Aya</creator><creator>Yamada, Toshihiko</creator><creator>Jørgensen, Uffe</creator><creator>Hodkinson, Trevor R.</creator><creator>Gifford, Justin</creator><creator>Juvik, John A.</creator><creator>Sacks, Erik J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201503</creationdate><title>Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones</title><author>Głowacka, Katarzyna ; Clark, Lindsay V. ; Adhikari, Shivani ; Peng, Junhua ; Stewart, J. Ryan ; Nishiwaki, Aya ; Yamada, Toshihiko ; Jørgensen, Uffe ; Hodkinson, Trevor R. ; Gifford, Justin ; Juvik, John A. ; Sacks, Erik J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3456-1c96fb869e3836a838c4fa5b4e5fffd50d2cf71c31b3cb91a81d56a78e391f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cabaret</topic><topic>Chloroplasts</topic><topic>Crop diseases</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Errors</topic><topic>Genetic crosses</topic><topic>Genetic distance</topic><topic>Genetic diversity</topic><topic>Genotype &amp; phenotype</topic><topic>Genotyping</topic><topic>genotyping error</topic><topic>interspecific hybrids</topic><topic>Markers</topic><topic>Miscanthus</topic><topic>Miscanthus sacchariflorus</topic><topic>Miscanthus sinensis</topic><topic>Offspring</topic><topic>Plant propagation</topic><topic>Polymorphism</topic><topic>Progeny</topic><topic>RAD‐seq</topic><topic>Renewable energy</topic><topic>Similarity</topic><topic>SSR</topic><toplevel>online_resources</toplevel><creatorcontrib>Głowacka, Katarzyna</creatorcontrib><creatorcontrib>Clark, Lindsay V.</creatorcontrib><creatorcontrib>Adhikari, Shivani</creatorcontrib><creatorcontrib>Peng, Junhua</creatorcontrib><creatorcontrib>Stewart, J. Ryan</creatorcontrib><creatorcontrib>Nishiwaki, Aya</creatorcontrib><creatorcontrib>Yamada, Toshihiko</creatorcontrib><creatorcontrib>Jørgensen, Uffe</creatorcontrib><creatorcontrib>Hodkinson, Trevor R.</creatorcontrib><creatorcontrib>Gifford, Justin</creatorcontrib><creatorcontrib>Juvik, John A.</creatorcontrib><creatorcontrib>Sacks, Erik J.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Global change biology. Bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Głowacka, Katarzyna</au><au>Clark, Lindsay V.</au><au>Adhikari, Shivani</au><au>Peng, Junhua</au><au>Stewart, J. Ryan</au><au>Nishiwaki, Aya</au><au>Yamada, Toshihiko</au><au>Jørgensen, Uffe</au><au>Hodkinson, Trevor R.</au><au>Gifford, Justin</au><au>Juvik, John A.</au><au>Sacks, Erik J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones</atitle><jtitle>Global change biology. Bioenergy</jtitle><date>2015-03</date><risdate>2015</risdate><volume>7</volume><issue>2</issue><spage>386</spage><epage>404</epage><pages>386-404</pages><issn>1757-1693</issn><eissn>1757-1707</eissn><abstract>Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers.</abstract><cop>Oxford</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/gcbb.12166</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1757-1693
ispartof Global change biology. Bioenergy, 2015-03, Vol.7 (2), p.386-404
issn 1757-1693
1757-1707
language eng
recordid cdi_proquest_miscellaneous_1664201049
source Wiley Online Library Open Access
subjects Cabaret
Chloroplasts
Crop diseases
Crops
Cultivars
Deoxyribonucleic acid
DNA
DNA sequencing
Errors
Genetic crosses
Genetic distance
Genetic diversity
Genotype & phenotype
Genotyping
genotyping error
interspecific hybrids
Markers
Miscanthus
Miscanthus sacchariflorus
Miscanthus sinensis
Offspring
Plant propagation
Polymorphism
Progeny
RAD‐seq
Renewable energy
Similarity
SSR
title Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variation%20in%20Miscanthus%C2%A0%C3%97%C2%A0giganteus%20and%20the%20importance%20of%20estimating%20genetic%20distance%20thresholds%20for%20differentiating%20clones&rft.jtitle=Global%20change%20biology.%20Bioenergy&rft.au=G%C5%82owacka,%20Katarzyna&rft.date=2015-03&rft.volume=7&rft.issue=2&rft.spage=386&rft.epage=404&rft.pages=386-404&rft.issn=1757-1693&rft.eissn=1757-1707&rft_id=info:doi/10.1111/gcbb.12166&rft_dat=%3Cproquest_24P%3E2299129701%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299129701&rft_id=info:pmid/&rfr_iscdi=true