Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources

Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH₄) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2015-03, Vol.21 (3), p.1165-1181
Hauptverfasser: Chu, Housen, Gottgens, Johan F, Chen, Jiquan, Sun, Ge, Desai, Ankur R, Ouyang, Zutao, Shao, Changliang, Czajkowski, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1181
container_issue 3
container_start_page 1165
container_title Global change biology
container_volume 21
creator Chu, Housen
Gottgens, Johan F
Chen, Jiquan
Sun, Ge
Desai, Ankur R
Ouyang, Zutao
Shao, Changliang
Czajkowski, Kevin
description Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH₄) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO₂) and CH₄] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m⁻² yr⁻¹during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m⁻² yr⁻¹). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO₂sink in 2011 (−78.8 ± 33.6 g C m⁻² yr⁻¹), near CO₂‐neutral in 2012 (29.7 ± 37.2 g C m⁻² yr⁻¹), and a CO₂source in 2013 (92.9 ± 28.0 g C m⁻² yr⁻¹). The CH₄emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m⁻² yr⁻¹. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m⁻² yr⁻¹, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m⁻² yr⁻¹to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.
doi_str_mv 10.1111/gcb.12760
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664200877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3592779991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4480-5f36d46efcc268c6235a6b046ae6694ad5d47ea36bd6eac3d72df551010d891f3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEoqWw4AXAEhuQSOvf68yyDDCARrCACnaWYzszLklcbKdlFrw7HtJ2gYSEN7auvnN0j09VPSb4mJRzsjHtMaES8J3qkDAQNeUN3N2_Ba8JJuygepDSOcaYUQz3qwMqaCOxIIfVr2XvB529QZc6et363ufdS7Td2Rj6sClzPYZB92WmR4sGl7d6dMgNPiUfRmT0iPIUR3QRg51M9pcOddGl7ZXOLqJBx7R1CfkxBzS6XPjYFlkKUzQuPazudbpP7tH1fVSdvX3zZfmuXn9avV-ermvDeYNr0TGwHFxnDIXGAGVCQ4s5aAew4NoKy6XTDFoLThtmJbWdECU5ts2CdOyoej77li1_TC5lVfY3ru9LljAlRQA4xbiR8j9QIRkBSnlBn_2FnpdYYwmypwRnGCQu1IuZMjGkFF2nLmL58rhTBKt9farUp_7UV9gn145TOzh7S970VYCTGbjyvdv920mtlq9uLOtZ4VN2P28VOn5XIJkU6uvHlZKvv61ZIz8oUfinM9_poPQm-qTOPlNMBMZkAdBg9htH1LzZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655430670</pqid></control><display><type>article</type><title>Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Chu, Housen ; Gottgens, Johan F ; Chen, Jiquan ; Sun, Ge ; Desai, Ankur R ; Ouyang, Zutao ; Shao, Changliang ; Czajkowski, Kevin</creator><creatorcontrib>Chu, Housen ; Gottgens, Johan F ; Chen, Jiquan ; Sun, Ge ; Desai, Ankur R ; Ouyang, Zutao ; Shao, Changliang ; Czajkowski, Kevin</creatorcontrib><description>Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH₄) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO₂) and CH₄] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m⁻² yr⁻¹during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m⁻² yr⁻¹). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO₂sink in 2011 (−78.8 ± 33.6 g C m⁻² yr⁻¹), near CO₂‐neutral in 2012 (29.7 ± 37.2 g C m⁻² yr⁻¹), and a CO₂source in 2013 (92.9 ± 28.0 g C m⁻² yr⁻¹). The CH₄emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m⁻² yr⁻¹. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m⁻² yr⁻¹, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m⁻² yr⁻¹to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12760</identifier><identifier>PMID: 25287051</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>Biogeochemistry ; carbon ; carbon budget ; Carbon Cycle ; carbon dioxide ; carbon sequestration ; carbon sinks ; Climate ; Climate change ; dissolved organic carbon ; ecological function ; ecosystem respiration ; ecosystems ; eddy-covariance ; Emissions ; Fresh Water ; freshwater ; Hydrology ; marshes ; Methane ; Methane - analysis ; Ohio ; particulate organic carbon ; Seasons ; sediments ; Wetlands</subject><ispartof>Global change biology, 2015-03, Vol.21 (3), p.1165-1181</ispartof><rights>2014 John Wiley &amp; Sons Ltd</rights><rights>2014 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4480-5f36d46efcc268c6235a6b046ae6694ad5d47ea36bd6eac3d72df551010d891f3</citedby><cites>FETCH-LOGICAL-c4480-5f36d46efcc268c6235a6b046ae6694ad5d47ea36bd6eac3d72df551010d891f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12760$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12760$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25287051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Housen</creatorcontrib><creatorcontrib>Gottgens, Johan F</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Sun, Ge</creatorcontrib><creatorcontrib>Desai, Ankur R</creatorcontrib><creatorcontrib>Ouyang, Zutao</creatorcontrib><creatorcontrib>Shao, Changliang</creatorcontrib><creatorcontrib>Czajkowski, Kevin</creatorcontrib><title>Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH₄) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO₂) and CH₄] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m⁻² yr⁻¹during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m⁻² yr⁻¹). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO₂sink in 2011 (−78.8 ± 33.6 g C m⁻² yr⁻¹), near CO₂‐neutral in 2012 (29.7 ± 37.2 g C m⁻² yr⁻¹), and a CO₂source in 2013 (92.9 ± 28.0 g C m⁻² yr⁻¹). The CH₄emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m⁻² yr⁻¹. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m⁻² yr⁻¹, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m⁻² yr⁻¹to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.</description><subject>Biogeochemistry</subject><subject>carbon</subject><subject>carbon budget</subject><subject>Carbon Cycle</subject><subject>carbon dioxide</subject><subject>carbon sequestration</subject><subject>carbon sinks</subject><subject>Climate</subject><subject>Climate change</subject><subject>dissolved organic carbon</subject><subject>ecological function</subject><subject>ecosystem respiration</subject><subject>ecosystems</subject><subject>eddy-covariance</subject><subject>Emissions</subject><subject>Fresh Water</subject><subject>freshwater</subject><subject>Hydrology</subject><subject>marshes</subject><subject>Methane</subject><subject>Methane - analysis</subject><subject>Ohio</subject><subject>particulate organic carbon</subject><subject>Seasons</subject><subject>sediments</subject><subject>Wetlands</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEoqWw4AXAEhuQSOvf68yyDDCARrCACnaWYzszLklcbKdlFrw7HtJ2gYSEN7auvnN0j09VPSb4mJRzsjHtMaES8J3qkDAQNeUN3N2_Ba8JJuygepDSOcaYUQz3qwMqaCOxIIfVr2XvB529QZc6et363ufdS7Td2Rj6sClzPYZB92WmR4sGl7d6dMgNPiUfRmT0iPIUR3QRg51M9pcOddGl7ZXOLqJBx7R1CfkxBzS6XPjYFlkKUzQuPazudbpP7tH1fVSdvX3zZfmuXn9avV-ermvDeYNr0TGwHFxnDIXGAGVCQ4s5aAew4NoKy6XTDFoLThtmJbWdECU5ts2CdOyoej77li1_TC5lVfY3ru9LljAlRQA4xbiR8j9QIRkBSnlBn_2FnpdYYwmypwRnGCQu1IuZMjGkFF2nLmL58rhTBKt9farUp_7UV9gn145TOzh7S970VYCTGbjyvdv920mtlq9uLOtZ4VN2P28VOn5XIJkU6uvHlZKvv61ZIz8oUfinM9_poPQm-qTOPlNMBMZkAdBg9htH1LzZ</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Chu, Housen</creator><creator>Gottgens, Johan F</creator><creator>Chen, Jiquan</creator><creator>Sun, Ge</creator><creator>Desai, Ankur R</creator><creator>Ouyang, Zutao</creator><creator>Shao, Changliang</creator><creator>Czajkowski, Kevin</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7ST</scope><scope>7TG</scope><scope>7TV</scope><scope>7U6</scope><scope>KL.</scope></search><sort><creationdate>201503</creationdate><title>Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources</title><author>Chu, Housen ; Gottgens, Johan F ; Chen, Jiquan ; Sun, Ge ; Desai, Ankur R ; Ouyang, Zutao ; Shao, Changliang ; Czajkowski, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4480-5f36d46efcc268c6235a6b046ae6694ad5d47ea36bd6eac3d72df551010d891f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biogeochemistry</topic><topic>carbon</topic><topic>carbon budget</topic><topic>Carbon Cycle</topic><topic>carbon dioxide</topic><topic>carbon sequestration</topic><topic>carbon sinks</topic><topic>Climate</topic><topic>Climate change</topic><topic>dissolved organic carbon</topic><topic>ecological function</topic><topic>ecosystem respiration</topic><topic>ecosystems</topic><topic>eddy-covariance</topic><topic>Emissions</topic><topic>Fresh Water</topic><topic>freshwater</topic><topic>Hydrology</topic><topic>marshes</topic><topic>Methane</topic><topic>Methane - analysis</topic><topic>Ohio</topic><topic>particulate organic carbon</topic><topic>Seasons</topic><topic>sediments</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Housen</creatorcontrib><creatorcontrib>Gottgens, Johan F</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Sun, Ge</creatorcontrib><creatorcontrib>Desai, Ankur R</creatorcontrib><creatorcontrib>Ouyang, Zutao</creatorcontrib><creatorcontrib>Shao, Changliang</creatorcontrib><creatorcontrib>Czajkowski, Kevin</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Housen</au><au>Gottgens, Johan F</au><au>Chen, Jiquan</au><au>Sun, Ge</au><au>Desai, Ankur R</au><au>Ouyang, Zutao</au><au>Shao, Changliang</au><au>Czajkowski, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2015-03</date><risdate>2015</risdate><volume>21</volume><issue>3</issue><spage>1165</spage><epage>1181</epage><pages>1165-1181</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH₄) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO₂) and CH₄] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m⁻² yr⁻¹during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m⁻² yr⁻¹). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO₂sink in 2011 (−78.8 ± 33.6 g C m⁻² yr⁻¹), near CO₂‐neutral in 2012 (29.7 ± 37.2 g C m⁻² yr⁻¹), and a CO₂source in 2013 (92.9 ± 28.0 g C m⁻² yr⁻¹). The CH₄emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m⁻² yr⁻¹. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m⁻² yr⁻¹, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m⁻² yr⁻¹to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>25287051</pmid><doi>10.1111/gcb.12760</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2015-03, Vol.21 (3), p.1165-1181
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_1664200877
source MEDLINE; Access via Wiley Online Library
subjects Biogeochemistry
carbon
carbon budget
Carbon Cycle
carbon dioxide
carbon sequestration
carbon sinks
Climate
Climate change
dissolved organic carbon
ecological function
ecosystem respiration
ecosystems
eddy-covariance
Emissions
Fresh Water
freshwater
Hydrology
marshes
Methane
Methane - analysis
Ohio
particulate organic carbon
Seasons
sediments
Wetlands
title Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climatic%20variability,%20hydrologic%20anomaly,%20and%20methane%20emission%20can%20turn%20productive%20freshwater%20marshes%20into%20net%20carbon%20sources&rft.jtitle=Global%20change%20biology&rft.au=Chu,%20Housen&rft.date=2015-03&rft.volume=21&rft.issue=3&rft.spage=1165&rft.epage=1181&rft.pages=1165-1181&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12760&rft_dat=%3Cproquest_cross%3E3592779991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1655430670&rft_id=info:pmid/25287051&rfr_iscdi=true