A new technique for the rapid characterization of catalysts: Tandem micro-reactor-gas chromatography/mass spectrometry

The design of a tandem micro‐reactor is discussed. A tandem micro‐reactor, consists of two reactors (upper and lower), which are individually temperature‐controlled. The upper reactor (1st reactor) is used to preheat a gas, vaporize a liquid, or thermally decompose (i.e., pyrolyze) organic solids in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental progress 2014-10, Vol.33 (3), p.688-692
Hauptverfasser: Watanabe, Chu, Ramus, Terry, Meijboom, Reinout, Freeman, Bob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 3
container_start_page 688
container_title Environmental progress
container_volume 33
creator Watanabe, Chu
Ramus, Terry
Meijboom, Reinout
Freeman, Bob
description The design of a tandem micro‐reactor is discussed. A tandem micro‐reactor, consists of two reactors (upper and lower), which are individually temperature‐controlled. The upper reactor (1st reactor) is used to preheat a gas, vaporize a liquid, or thermally decompose (i.e., pyrolyze) organic solids in order to form a vapor phase sample. The catalyst reaction tube is packed with a catalyst and placed in the lower reactor (2nd reactor). Vapors from the 1st reactor flow into the reaction tube in the lower reactor, where they react with the catalyst. A mass flow controller allows selection of one to three reactant gases that can be introduced to the sample vapors exiting the upper reactor prior to entering the lower reactor containing the catalyst bed. The reaction products exiting the lower reactor flow directly into the gas chromatograph for analysis. The catalyst is evaluated by noting what compounds are formed and their relative distribution using mass spectrometer detection. The transformation of cellulose, glycerol, and Jatropha “press cake” illustrate the value and convenience of using the tandem micro reactor to rapidly characterize a catalyst or a series of catalysts. © 2014 American Institute of Chemical Engineers Environ Prog, 33: 688–692, 2014
doi_str_mv 10.1002/ep.11994
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664200534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664200534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5304-81a3012ec0cdba91b4af6ddf44286124a5e6eac51279d6a4377fd413a0a7de453</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhhdRsFbBnxAoBW-2TTbJfvSu1n6Ihyqlxcswzc72pN3drJmctttfb7THIwheZQjPPDMvk2XvBd8TnBf7OO0J0TTqRbYlGqXySmn-clOr4nX2huiW81KqptnK7g_ZiA8sol2O7scKWecDi0tkASbXMruEADZicE8QnR-Z75iFCP1MkQ7YJYwtDmxwNvg8YCJ9yG-AUl_wA0R_kzTLeX8AIkYT2pi-MYb5bfaqg57w3frdzq5Oji-PzvLF19PPR4eL3GrJVV4LkFwUaLltr6ER1wq6sm27lKMuRaFAY5mmalFUTVuCklXVtUpI4FC1qLTczj48e6fgUzqKZnBkse9hRL8iI8pSFZxrqRK68w9661dhTNslStdFIWtd_xWmxEQBOzMFN0CYjeDm1wEMTub3ARK6uxYCWei7AKN1tOFTgkrJRiQuf-YeXI_zf33m-Nsf75p3FPFxw0O4M2UlK22-n5-aj-eLs0-LC22-yJ9f3qPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658223858</pqid></control><display><type>article</type><title>A new technique for the rapid characterization of catalysts: Tandem micro-reactor-gas chromatography/mass spectrometry</title><source>Wiley Online Library All Journals</source><creator>Watanabe, Chu ; Ramus, Terry ; Meijboom, Reinout ; Freeman, Bob</creator><creatorcontrib>Watanabe, Chu ; Ramus, Terry ; Meijboom, Reinout ; Freeman, Bob</creatorcontrib><description>The design of a tandem micro‐reactor is discussed. A tandem micro‐reactor, consists of two reactors (upper and lower), which are individually temperature‐controlled. The upper reactor (1st reactor) is used to preheat a gas, vaporize a liquid, or thermally decompose (i.e., pyrolyze) organic solids in order to form a vapor phase sample. The catalyst reaction tube is packed with a catalyst and placed in the lower reactor (2nd reactor). Vapors from the 1st reactor flow into the reaction tube in the lower reactor, where they react with the catalyst. A mass flow controller allows selection of one to three reactant gases that can be introduced to the sample vapors exiting the upper reactor prior to entering the lower reactor containing the catalyst bed. The reaction products exiting the lower reactor flow directly into the gas chromatograph for analysis. The catalyst is evaluated by noting what compounds are formed and their relative distribution using mass spectrometer detection. The transformation of cellulose, glycerol, and Jatropha “press cake” illustrate the value and convenience of using the tandem micro reactor to rapidly characterize a catalyst or a series of catalysts. © 2014 American Institute of Chemical Engineers Environ Prog, 33: 688–692, 2014</description><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.11994</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; biofuels ; biomass ; Catalysis ; Catalysts ; Catalytic reactions ; Chemical engineering ; Chemistry ; Chromatography ; Exact sciences and technology ; General and physical chemistry ; Heat and mass transfer. Packings, plates ; Jatropha ; Mass spectrometry ; Pollution ; pyrolysis ; Reactors ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Environmental progress, 2014-10, Vol.33 (3), p.688-692</ispartof><rights>2014 American Institute of Chemical Engineers Environ Prog</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5304-81a3012ec0cdba91b4af6ddf44286124a5e6eac51279d6a4377fd413a0a7de453</citedby><cites>FETCH-LOGICAL-c5304-81a3012ec0cdba91b4af6ddf44286124a5e6eac51279d6a4377fd413a0a7de453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.11994$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.11994$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28674391$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Chu</creatorcontrib><creatorcontrib>Ramus, Terry</creatorcontrib><creatorcontrib>Meijboom, Reinout</creatorcontrib><creatorcontrib>Freeman, Bob</creatorcontrib><title>A new technique for the rapid characterization of catalysts: Tandem micro-reactor-gas chromatography/mass spectrometry</title><title>Environmental progress</title><addtitle>Environ. Prog. Sustainable Energy</addtitle><description>The design of a tandem micro‐reactor is discussed. A tandem micro‐reactor, consists of two reactors (upper and lower), which are individually temperature‐controlled. The upper reactor (1st reactor) is used to preheat a gas, vaporize a liquid, or thermally decompose (i.e., pyrolyze) organic solids in order to form a vapor phase sample. The catalyst reaction tube is packed with a catalyst and placed in the lower reactor (2nd reactor). Vapors from the 1st reactor flow into the reaction tube in the lower reactor, where they react with the catalyst. A mass flow controller allows selection of one to three reactant gases that can be introduced to the sample vapors exiting the upper reactor prior to entering the lower reactor containing the catalyst bed. The reaction products exiting the lower reactor flow directly into the gas chromatograph for analysis. The catalyst is evaluated by noting what compounds are formed and their relative distribution using mass spectrometer detection. The transformation of cellulose, glycerol, and Jatropha “press cake” illustrate the value and convenience of using the tandem micro reactor to rapidly characterize a catalyst or a series of catalysts. © 2014 American Institute of Chemical Engineers Environ Prog, 33: 688–692, 2014</description><subject>Applied sciences</subject><subject>biofuels</subject><subject>biomass</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Chromatography</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Jatropha</subject><subject>Mass spectrometry</subject><subject>Pollution</subject><subject>pyrolysis</subject><subject>Reactors</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1944-7442</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kV1rFTEQhhdRsFbBnxAoBW-2TTbJfvSu1n6Ihyqlxcswzc72pN3drJmctttfb7THIwheZQjPPDMvk2XvBd8TnBf7OO0J0TTqRbYlGqXySmn-clOr4nX2huiW81KqptnK7g_ZiA8sol2O7scKWecDi0tkASbXMruEADZicE8QnR-Z75iFCP1MkQ7YJYwtDmxwNvg8YCJ9yG-AUl_wA0R_kzTLeX8AIkYT2pi-MYb5bfaqg57w3frdzq5Oji-PzvLF19PPR4eL3GrJVV4LkFwUaLltr6ER1wq6sm27lKMuRaFAY5mmalFUTVuCklXVtUpI4FC1qLTczj48e6fgUzqKZnBkse9hRL8iI8pSFZxrqRK68w9661dhTNslStdFIWtd_xWmxEQBOzMFN0CYjeDm1wEMTub3ARK6uxYCWei7AKN1tOFTgkrJRiQuf-YeXI_zf33m-Nsf75p3FPFxw0O4M2UlK22-n5-aj-eLs0-LC22-yJ9f3qPg</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Watanabe, Chu</creator><creator>Ramus, Terry</creator><creator>Meijboom, Reinout</creator><creator>Freeman, Bob</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201410</creationdate><title>A new technique for the rapid characterization of catalysts: Tandem micro-reactor-gas chromatography/mass spectrometry</title><author>Watanabe, Chu ; Ramus, Terry ; Meijboom, Reinout ; Freeman, Bob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5304-81a3012ec0cdba91b4af6ddf44286124a5e6eac51279d6a4377fd413a0a7de453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>biofuels</topic><topic>biomass</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Chromatography</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Jatropha</topic><topic>Mass spectrometry</topic><topic>Pollution</topic><topic>pyrolysis</topic><topic>Reactors</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Chu</creatorcontrib><creatorcontrib>Ramus, Terry</creatorcontrib><creatorcontrib>Meijboom, Reinout</creatorcontrib><creatorcontrib>Freeman, Bob</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Chu</au><au>Ramus, Terry</au><au>Meijboom, Reinout</au><au>Freeman, Bob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new technique for the rapid characterization of catalysts: Tandem micro-reactor-gas chromatography/mass spectrometry</atitle><jtitle>Environmental progress</jtitle><addtitle>Environ. Prog. Sustainable Energy</addtitle><date>2014-10</date><risdate>2014</risdate><volume>33</volume><issue>3</issue><spage>688</spage><epage>692</epage><pages>688-692</pages><issn>1944-7442</issn><eissn>1944-7450</eissn><abstract>The design of a tandem micro‐reactor is discussed. A tandem micro‐reactor, consists of two reactors (upper and lower), which are individually temperature‐controlled. The upper reactor (1st reactor) is used to preheat a gas, vaporize a liquid, or thermally decompose (i.e., pyrolyze) organic solids in order to form a vapor phase sample. The catalyst reaction tube is packed with a catalyst and placed in the lower reactor (2nd reactor). Vapors from the 1st reactor flow into the reaction tube in the lower reactor, where they react with the catalyst. A mass flow controller allows selection of one to three reactant gases that can be introduced to the sample vapors exiting the upper reactor prior to entering the lower reactor containing the catalyst bed. The reaction products exiting the lower reactor flow directly into the gas chromatograph for analysis. The catalyst is evaluated by noting what compounds are formed and their relative distribution using mass spectrometer detection. The transformation of cellulose, glycerol, and Jatropha “press cake” illustrate the value and convenience of using the tandem micro reactor to rapidly characterize a catalyst or a series of catalysts. © 2014 American Institute of Chemical Engineers Environ Prog, 33: 688–692, 2014</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/ep.11994</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-7442
ispartof Environmental progress, 2014-10, Vol.33 (3), p.688-692
issn 1944-7442
1944-7450
language eng
recordid cdi_proquest_miscellaneous_1664200534
source Wiley Online Library All Journals
subjects Applied sciences
biofuels
biomass
Catalysis
Catalysts
Catalytic reactions
Chemical engineering
Chemistry
Chromatography
Exact sciences and technology
General and physical chemistry
Heat and mass transfer. Packings, plates
Jatropha
Mass spectrometry
Pollution
pyrolysis
Reactors
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title A new technique for the rapid characterization of catalysts: Tandem micro-reactor-gas chromatography/mass spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20technique%20for%20the%20rapid%20characterization%20of%20catalysts:%20Tandem%20micro-reactor-gas%20chromatography/mass%20spectrometry&rft.jtitle=Environmental%20progress&rft.au=Watanabe,%20Chu&rft.date=2014-10&rft.volume=33&rft.issue=3&rft.spage=688&rft.epage=692&rft.pages=688-692&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.11994&rft_dat=%3Cproquest_cross%3E1664200534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658223858&rft_id=info:pmid/&rfr_iscdi=true