USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination

The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2015-02, Vol.34 (8), p.1058-1063
Hauptverfasser: Martín, Y, Cabrera, E, Amoedo, H, Hernández-Pérez, S, Domínguez-Kelly, R, Freire, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1063
container_issue 8
container_start_page 1058
container_title Oncogene
container_volume 34
creator Martín, Y
Cabrera, E
Amoedo, H
Hernández-Pérez, S
Domínguez-Kelly, R
Freire, R
description The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achieve properly these functions, Claspin is tightly regulated by ubiquitinin-dependent proteasomal degradation, which controls Claspin levels in a DNA-damage- and cell-cycle-dependent manner. Here, we identified a new regulator of Claspin, the ubiquitin-specific peptidase 29, USP29. Downregulation of USP29 destabilizes Claspin, whereas its overexpression promotes an increase in Claspin levels. USP29 interacts with Claspin and is able to deubiquitinate it both in vivo and in vitro . Most importantly, USP29 knockdown results in an impaired phosphorylation of Chk1 after DNA damage and USP29-depleted cells show a major defect in the S-phase progression. With these results, we identified USP29 as a new player in the ATR-Chk1 pathway and the control of DNA replication.
doi_str_mv 10.1038/onc.2014.38
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664199323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A403448818</galeid><sourcerecordid>A403448818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-ae67a350b78523dda58e2f01a358338883d591e4403ed38f09d5942b8fe26b383</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhxB1Z4lKpZPF37GO1ooBUARL0bDnJpHXJ2qntHPbf42XLpyqEfLA8fuYdv55B6Dkla0q4fh1Dv2aEijXXD9CKilY1UhrxEK2IkaQxjLMj9CTnG0JIawh7jI6YUJwpSlfow-XnT8zgPoaS4pRxuQaci-v85MsOxxH319B_naMPBbvBzSUmvJlcnn3A3Q4PsHT-dvHFB1d8DE_Ro9FNGZ7d7cfo8vzNl8275uLj2_ebs4umV1KWxoFqHZeka7VkfBic1MBGQmtMc6615oM0FIQgHAauR2LqWbBOj8BUxzU_RicH3TnF2wVysVufe5gmFyAu2VKlBDWGM_4fqGw5ayWVFX35F3oTlxSqEVuFqKKtbNW_qKqliOKUiF_UlZvA-jDGkly_L23Pqi0htKZ7H-t7qLoG2PraFBh9jf-RcHpI6FPMOcFo5-S3Lu0sJXY_DraOg92Pg_3-TS_unrp0Wxh-sj_6X4FXByDXq3AF6Tcv9-h9A67EuhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656063104</pqid></control><display><type>article</type><title>USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Martín, Y ; Cabrera, E ; Amoedo, H ; Hernández-Pérez, S ; Domínguez-Kelly, R ; Freire, R</creator><creatorcontrib>Martín, Y ; Cabrera, E ; Amoedo, H ; Hernández-Pérez, S ; Domínguez-Kelly, R ; Freire, R</creatorcontrib><description>The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achieve properly these functions, Claspin is tightly regulated by ubiquitinin-dependent proteasomal degradation, which controls Claspin levels in a DNA-damage- and cell-cycle-dependent manner. Here, we identified a new regulator of Claspin, the ubiquitin-specific peptidase 29, USP29. Downregulation of USP29 destabilizes Claspin, whereas its overexpression promotes an increase in Claspin levels. USP29 interacts with Claspin and is able to deubiquitinate it both in vivo and in vitro . Most importantly, USP29 knockdown results in an impaired phosphorylation of Chk1 after DNA damage and USP29-depleted cells show a major defect in the S-phase progression. With these results, we identified USP29 as a new player in the ATR-Chk1 pathway and the control of DNA replication.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2014.38</identifier><identifier>PMID: 24632611</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/1427 ; 631/45/612/645 ; 631/80/86/2371 ; 692/420/755 ; Adaptor Proteins, Signal Transducing - metabolism ; Apoptosis ; Cancer ; Cell Biology ; Cell survival ; Cellular proteins ; Checkpoint Kinase 1 ; CHK1 protein ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA replication ; DNA Replication - genetics ; Genetic aspects ; Genetic research ; Genomes ; Genotoxicity ; HEK293 Cells ; Human Genetics ; Humans ; Internal Medicine ; Medicine ; Medicine &amp; Public Health ; Oncology ; Peptidase ; Phosphorylation ; Properties ; Proteasomes ; Protein Kinases - metabolism ; Protein Processing, Post-Translational - genetics ; Protein Stability ; Proteolysis ; Replication ; short-communication ; Studies ; Tumor Cells, Cultured ; Ubiquitin ; Ubiquitin Thiolesterase - metabolism ; Ubiquitin-proteasome system ; Ubiquitin-Specific Peptidase 7 ; Ubiquitin-Specific Proteases - genetics ; Ubiquitin-Specific Proteases - physiology ; Ubiquitination - genetics ; Yeast</subject><ispartof>Oncogene, 2015-02, Vol.34 (8), p.1058-1063</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 19, 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-ae67a350b78523dda58e2f01a358338883d591e4403ed38f09d5942b8fe26b383</citedby><cites>FETCH-LOGICAL-c655t-ae67a350b78523dda58e2f01a358338883d591e4403ed38f09d5942b8fe26b383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24632611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martín, Y</creatorcontrib><creatorcontrib>Cabrera, E</creatorcontrib><creatorcontrib>Amoedo, H</creatorcontrib><creatorcontrib>Hernández-Pérez, S</creatorcontrib><creatorcontrib>Domínguez-Kelly, R</creatorcontrib><creatorcontrib>Freire, R</creatorcontrib><title>USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achieve properly these functions, Claspin is tightly regulated by ubiquitinin-dependent proteasomal degradation, which controls Claspin levels in a DNA-damage- and cell-cycle-dependent manner. Here, we identified a new regulator of Claspin, the ubiquitin-specific peptidase 29, USP29. Downregulation of USP29 destabilizes Claspin, whereas its overexpression promotes an increase in Claspin levels. USP29 interacts with Claspin and is able to deubiquitinate it both in vivo and in vitro . Most importantly, USP29 knockdown results in an impaired phosphorylation of Chk1 after DNA damage and USP29-depleted cells show a major defect in the S-phase progression. With these results, we identified USP29 as a new player in the ATR-Chk1 pathway and the control of DNA replication.</description><subject>631/337/1427</subject><subject>631/45/612/645</subject><subject>631/80/86/2371</subject><subject>692/420/755</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell survival</subject><subject>Cellular proteins</subject><subject>Checkpoint Kinase 1</subject><subject>CHK1 protein</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genotoxicity</subject><subject>HEK293 Cells</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Oncology</subject><subject>Peptidase</subject><subject>Phosphorylation</subject><subject>Properties</subject><subject>Proteasomes</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Processing, Post-Translational - genetics</subject><subject>Protein Stability</subject><subject>Proteolysis</subject><subject>Replication</subject><subject>short-communication</subject><subject>Studies</subject><subject>Tumor Cells, Cultured</subject><subject>Ubiquitin</subject><subject>Ubiquitin Thiolesterase - metabolism</subject><subject>Ubiquitin-proteasome system</subject><subject>Ubiquitin-Specific Peptidase 7</subject><subject>Ubiquitin-Specific Proteases - genetics</subject><subject>Ubiquitin-Specific Proteases - physiology</subject><subject>Ubiquitination - genetics</subject><subject>Yeast</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhi0EokvhxB1Z4lKpZPF37GO1ooBUARL0bDnJpHXJ2qntHPbf42XLpyqEfLA8fuYdv55B6Dkla0q4fh1Dv2aEijXXD9CKilY1UhrxEK2IkaQxjLMj9CTnG0JIawh7jI6YUJwpSlfow-XnT8zgPoaS4pRxuQaci-v85MsOxxH319B_naMPBbvBzSUmvJlcnn3A3Q4PsHT-dvHFB1d8DE_Ro9FNGZ7d7cfo8vzNl8275uLj2_ebs4umV1KWxoFqHZeka7VkfBic1MBGQmtMc6615oM0FIQgHAauR2LqWbBOj8BUxzU_RicH3TnF2wVysVufe5gmFyAu2VKlBDWGM_4fqGw5ayWVFX35F3oTlxSqEVuFqKKtbNW_qKqliOKUiF_UlZvA-jDGkly_L23Pqi0htKZ7H-t7qLoG2PraFBh9jf-RcHpI6FPMOcFo5-S3Lu0sJXY_DraOg92Pg_3-TS_unrp0Wxh-sj_6X4FXByDXq3AF6Tcv9-h9A67EuhI</recordid><startdate>20150219</startdate><enddate>20150219</enddate><creator>Martín, Y</creator><creator>Cabrera, E</creator><creator>Amoedo, H</creator><creator>Hernández-Pérez, S</creator><creator>Domínguez-Kelly, R</creator><creator>Freire, R</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150219</creationdate><title>USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination</title><author>Martín, Y ; Cabrera, E ; Amoedo, H ; Hernández-Pérez, S ; Domínguez-Kelly, R ; Freire, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-ae67a350b78523dda58e2f01a358338883d591e4403ed38f09d5942b8fe26b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/337/1427</topic><topic>631/45/612/645</topic><topic>631/80/86/2371</topic><topic>692/420/755</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell survival</topic><topic>Cellular proteins</topic><topic>Checkpoint Kinase 1</topic><topic>CHK1 protein</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genotoxicity</topic><topic>HEK293 Cells</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Oncology</topic><topic>Peptidase</topic><topic>Phosphorylation</topic><topic>Properties</topic><topic>Proteasomes</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Processing, Post-Translational - genetics</topic><topic>Protein Stability</topic><topic>Proteolysis</topic><topic>Replication</topic><topic>short-communication</topic><topic>Studies</topic><topic>Tumor Cells, Cultured</topic><topic>Ubiquitin</topic><topic>Ubiquitin Thiolesterase - metabolism</topic><topic>Ubiquitin-proteasome system</topic><topic>Ubiquitin-Specific Peptidase 7</topic><topic>Ubiquitin-Specific Proteases - genetics</topic><topic>Ubiquitin-Specific Proteases - physiology</topic><topic>Ubiquitination - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín, Y</creatorcontrib><creatorcontrib>Cabrera, E</creatorcontrib><creatorcontrib>Amoedo, H</creatorcontrib><creatorcontrib>Hernández-Pérez, S</creatorcontrib><creatorcontrib>Domínguez-Kelly, R</creatorcontrib><creatorcontrib>Freire, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín, Y</au><au>Cabrera, E</au><au>Amoedo, H</au><au>Hernández-Pérez, S</au><au>Domínguez-Kelly, R</au><au>Freire, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2015-02-19</date><risdate>2015</risdate><volume>34</volume><issue>8</issue><spage>1058</spage><epage>1063</epage><pages>1058-1063</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achieve properly these functions, Claspin is tightly regulated by ubiquitinin-dependent proteasomal degradation, which controls Claspin levels in a DNA-damage- and cell-cycle-dependent manner. Here, we identified a new regulator of Claspin, the ubiquitin-specific peptidase 29, USP29. Downregulation of USP29 destabilizes Claspin, whereas its overexpression promotes an increase in Claspin levels. USP29 interacts with Claspin and is able to deubiquitinate it both in vivo and in vitro . Most importantly, USP29 knockdown results in an impaired phosphorylation of Chk1 after DNA damage and USP29-depleted cells show a major defect in the S-phase progression. With these results, we identified USP29 as a new player in the ATR-Chk1 pathway and the control of DNA replication.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24632611</pmid><doi>10.1038/onc.2014.38</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2015-02, Vol.34 (8), p.1058-1063
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_1664199323
source MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 631/337/1427
631/45/612/645
631/80/86/2371
692/420/755
Adaptor Proteins, Signal Transducing - metabolism
Apoptosis
Cancer
Cell Biology
Cell survival
Cellular proteins
Checkpoint Kinase 1
CHK1 protein
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA damage
DNA replication
DNA Replication - genetics
Genetic aspects
Genetic research
Genomes
Genotoxicity
HEK293 Cells
Human Genetics
Humans
Internal Medicine
Medicine
Medicine & Public Health
Oncology
Peptidase
Phosphorylation
Properties
Proteasomes
Protein Kinases - metabolism
Protein Processing, Post-Translational - genetics
Protein Stability
Proteolysis
Replication
short-communication
Studies
Tumor Cells, Cultured
Ubiquitin
Ubiquitin Thiolesterase - metabolism
Ubiquitin-proteasome system
Ubiquitin-Specific Peptidase 7
Ubiquitin-Specific Proteases - genetics
Ubiquitin-Specific Proteases - physiology
Ubiquitination - genetics
Yeast
title USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=USP29%20controls%20the%20stability%20of%20checkpoint%20adaptor%20Claspin%20by%20deubiquitination&rft.jtitle=Oncogene&rft.au=Mart%C3%ADn,%20Y&rft.date=2015-02-19&rft.volume=34&rft.issue=8&rft.spage=1058&rft.epage=1063&rft.pages=1058-1063&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2014.38&rft_dat=%3Cgale_proqu%3EA403448818%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656063104&rft_id=info:pmid/24632611&rft_galeid=A403448818&rfr_iscdi=true