USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination
The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achi...
Gespeichert in:
Veröffentlicht in: | Oncogene 2015-02, Vol.34 (8), p.1058-1063 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1063 |
---|---|
container_issue | 8 |
container_start_page | 1058 |
container_title | Oncogene |
container_volume | 34 |
creator | Martín, Y Cabrera, E Amoedo, H Hernández-Pérez, S Domínguez-Kelly, R Freire, R |
description | The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achieve properly these functions, Claspin is tightly regulated by ubiquitinin-dependent proteasomal degradation, which controls Claspin levels in a DNA-damage- and cell-cycle-dependent manner. Here, we identified a new regulator of Claspin, the ubiquitin-specific peptidase 29, USP29. Downregulation of USP29 destabilizes Claspin, whereas its overexpression promotes an increase in Claspin levels. USP29 interacts with Claspin and is able to deubiquitinate it both
in vivo
and
in vitro
. Most importantly, USP29 knockdown results in an impaired phosphorylation of Chk1 after DNA damage and USP29-depleted cells show a major defect in the S-phase progression. With these results, we identified USP29 as a new player in the ATR-Chk1 pathway and the control of DNA replication. |
doi_str_mv | 10.1038/onc.2014.38 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664199323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A403448818</galeid><sourcerecordid>A403448818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-ae67a350b78523dda58e2f01a358338883d591e4403ed38f09d5942b8fe26b383</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhxB1Z4lKpZPF37GO1ooBUARL0bDnJpHXJ2qntHPbf42XLpyqEfLA8fuYdv55B6Dkla0q4fh1Dv2aEijXXD9CKilY1UhrxEK2IkaQxjLMj9CTnG0JIawh7jI6YUJwpSlfow-XnT8zgPoaS4pRxuQaci-v85MsOxxH319B_naMPBbvBzSUmvJlcnn3A3Q4PsHT-dvHFB1d8DE_Ro9FNGZ7d7cfo8vzNl8275uLj2_ebs4umV1KWxoFqHZeka7VkfBic1MBGQmtMc6615oM0FIQgHAauR2LqWbBOj8BUxzU_RicH3TnF2wVysVufe5gmFyAu2VKlBDWGM_4fqGw5ayWVFX35F3oTlxSqEVuFqKKtbNW_qKqliOKUiF_UlZvA-jDGkly_L23Pqi0htKZ7H-t7qLoG2PraFBh9jf-RcHpI6FPMOcFo5-S3Lu0sJXY_DraOg92Pg_3-TS_unrp0Wxh-sj_6X4FXByDXq3AF6Tcv9-h9A67EuhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656063104</pqid></control><display><type>article</type><title>USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Martín, Y ; Cabrera, E ; Amoedo, H ; Hernández-Pérez, S ; Domínguez-Kelly, R ; Freire, R</creator><creatorcontrib>Martín, Y ; Cabrera, E ; Amoedo, H ; Hernández-Pérez, S ; Domínguez-Kelly, R ; Freire, R</creatorcontrib><description>The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achieve properly these functions, Claspin is tightly regulated by ubiquitinin-dependent proteasomal degradation, which controls Claspin levels in a DNA-damage- and cell-cycle-dependent manner. Here, we identified a new regulator of Claspin, the ubiquitin-specific peptidase 29, USP29. Downregulation of USP29 destabilizes Claspin, whereas its overexpression promotes an increase in Claspin levels. USP29 interacts with Claspin and is able to deubiquitinate it both
in vivo
and
in vitro
. Most importantly, USP29 knockdown results in an impaired phosphorylation of Chk1 after DNA damage and USP29-depleted cells show a major defect in the S-phase progression. With these results, we identified USP29 as a new player in the ATR-Chk1 pathway and the control of DNA replication.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2014.38</identifier><identifier>PMID: 24632611</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/1427 ; 631/45/612/645 ; 631/80/86/2371 ; 692/420/755 ; Adaptor Proteins, Signal Transducing - metabolism ; Apoptosis ; Cancer ; Cell Biology ; Cell survival ; Cellular proteins ; Checkpoint Kinase 1 ; CHK1 protein ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA replication ; DNA Replication - genetics ; Genetic aspects ; Genetic research ; Genomes ; Genotoxicity ; HEK293 Cells ; Human Genetics ; Humans ; Internal Medicine ; Medicine ; Medicine & Public Health ; Oncology ; Peptidase ; Phosphorylation ; Properties ; Proteasomes ; Protein Kinases - metabolism ; Protein Processing, Post-Translational - genetics ; Protein Stability ; Proteolysis ; Replication ; short-communication ; Studies ; Tumor Cells, Cultured ; Ubiquitin ; Ubiquitin Thiolesterase - metabolism ; Ubiquitin-proteasome system ; Ubiquitin-Specific Peptidase 7 ; Ubiquitin-Specific Proteases - genetics ; Ubiquitin-Specific Proteases - physiology ; Ubiquitination - genetics ; Yeast</subject><ispartof>Oncogene, 2015-02, Vol.34 (8), p.1058-1063</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 19, 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-ae67a350b78523dda58e2f01a358338883d591e4403ed38f09d5942b8fe26b383</citedby><cites>FETCH-LOGICAL-c655t-ae67a350b78523dda58e2f01a358338883d591e4403ed38f09d5942b8fe26b383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24632611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martín, Y</creatorcontrib><creatorcontrib>Cabrera, E</creatorcontrib><creatorcontrib>Amoedo, H</creatorcontrib><creatorcontrib>Hernández-Pérez, S</creatorcontrib><creatorcontrib>Domínguez-Kelly, R</creatorcontrib><creatorcontrib>Freire, R</creatorcontrib><title>USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achieve properly these functions, Claspin is tightly regulated by ubiquitinin-dependent proteasomal degradation, which controls Claspin levels in a DNA-damage- and cell-cycle-dependent manner. Here, we identified a new regulator of Claspin, the ubiquitin-specific peptidase 29, USP29. Downregulation of USP29 destabilizes Claspin, whereas its overexpression promotes an increase in Claspin levels. USP29 interacts with Claspin and is able to deubiquitinate it both
in vivo
and
in vitro
. Most importantly, USP29 knockdown results in an impaired phosphorylation of Chk1 after DNA damage and USP29-depleted cells show a major defect in the S-phase progression. With these results, we identified USP29 as a new player in the ATR-Chk1 pathway and the control of DNA replication.</description><subject>631/337/1427</subject><subject>631/45/612/645</subject><subject>631/80/86/2371</subject><subject>692/420/755</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell survival</subject><subject>Cellular proteins</subject><subject>Checkpoint Kinase 1</subject><subject>CHK1 protein</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genotoxicity</subject><subject>HEK293 Cells</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Oncology</subject><subject>Peptidase</subject><subject>Phosphorylation</subject><subject>Properties</subject><subject>Proteasomes</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Processing, Post-Translational - genetics</subject><subject>Protein Stability</subject><subject>Proteolysis</subject><subject>Replication</subject><subject>short-communication</subject><subject>Studies</subject><subject>Tumor Cells, Cultured</subject><subject>Ubiquitin</subject><subject>Ubiquitin Thiolesterase - metabolism</subject><subject>Ubiquitin-proteasome system</subject><subject>Ubiquitin-Specific Peptidase 7</subject><subject>Ubiquitin-Specific Proteases - genetics</subject><subject>Ubiquitin-Specific Proteases - physiology</subject><subject>Ubiquitination - genetics</subject><subject>Yeast</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhi0EokvhxB1Z4lKpZPF37GO1ooBUARL0bDnJpHXJ2qntHPbf42XLpyqEfLA8fuYdv55B6Dkla0q4fh1Dv2aEijXXD9CKilY1UhrxEK2IkaQxjLMj9CTnG0JIawh7jI6YUJwpSlfow-XnT8zgPoaS4pRxuQaci-v85MsOxxH319B_naMPBbvBzSUmvJlcnn3A3Q4PsHT-dvHFB1d8DE_Ro9FNGZ7d7cfo8vzNl8275uLj2_ebs4umV1KWxoFqHZeka7VkfBic1MBGQmtMc6615oM0FIQgHAauR2LqWbBOj8BUxzU_RicH3TnF2wVysVufe5gmFyAu2VKlBDWGM_4fqGw5ayWVFX35F3oTlxSqEVuFqKKtbNW_qKqliOKUiF_UlZvA-jDGkly_L23Pqi0htKZ7H-t7qLoG2PraFBh9jf-RcHpI6FPMOcFo5-S3Lu0sJXY_DraOg92Pg_3-TS_unrp0Wxh-sj_6X4FXByDXq3AF6Tcv9-h9A67EuhI</recordid><startdate>20150219</startdate><enddate>20150219</enddate><creator>Martín, Y</creator><creator>Cabrera, E</creator><creator>Amoedo, H</creator><creator>Hernández-Pérez, S</creator><creator>Domínguez-Kelly, R</creator><creator>Freire, R</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150219</creationdate><title>USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination</title><author>Martín, Y ; Cabrera, E ; Amoedo, H ; Hernández-Pérez, S ; Domínguez-Kelly, R ; Freire, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-ae67a350b78523dda58e2f01a358338883d591e4403ed38f09d5942b8fe26b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/337/1427</topic><topic>631/45/612/645</topic><topic>631/80/86/2371</topic><topic>692/420/755</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell survival</topic><topic>Cellular proteins</topic><topic>Checkpoint Kinase 1</topic><topic>CHK1 protein</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genotoxicity</topic><topic>HEK293 Cells</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Oncology</topic><topic>Peptidase</topic><topic>Phosphorylation</topic><topic>Properties</topic><topic>Proteasomes</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Processing, Post-Translational - genetics</topic><topic>Protein Stability</topic><topic>Proteolysis</topic><topic>Replication</topic><topic>short-communication</topic><topic>Studies</topic><topic>Tumor Cells, Cultured</topic><topic>Ubiquitin</topic><topic>Ubiquitin Thiolesterase - metabolism</topic><topic>Ubiquitin-proteasome system</topic><topic>Ubiquitin-Specific Peptidase 7</topic><topic>Ubiquitin-Specific Proteases - genetics</topic><topic>Ubiquitin-Specific Proteases - physiology</topic><topic>Ubiquitination - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín, Y</creatorcontrib><creatorcontrib>Cabrera, E</creatorcontrib><creatorcontrib>Amoedo, H</creatorcontrib><creatorcontrib>Hernández-Pérez, S</creatorcontrib><creatorcontrib>Domínguez-Kelly, R</creatorcontrib><creatorcontrib>Freire, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín, Y</au><au>Cabrera, E</au><au>Amoedo, H</au><au>Hernández-Pérez, S</au><au>Domínguez-Kelly, R</au><au>Freire, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2015-02-19</date><risdate>2015</risdate><volume>34</volume><issue>8</issue><spage>1058</spage><epage>1063</epage><pages>1058-1063</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achieve properly these functions, Claspin is tightly regulated by ubiquitinin-dependent proteasomal degradation, which controls Claspin levels in a DNA-damage- and cell-cycle-dependent manner. Here, we identified a new regulator of Claspin, the ubiquitin-specific peptidase 29, USP29. Downregulation of USP29 destabilizes Claspin, whereas its overexpression promotes an increase in Claspin levels. USP29 interacts with Claspin and is able to deubiquitinate it both
in vivo
and
in vitro
. Most importantly, USP29 knockdown results in an impaired phosphorylation of Chk1 after DNA damage and USP29-depleted cells show a major defect in the S-phase progression. With these results, we identified USP29 as a new player in the ATR-Chk1 pathway and the control of DNA replication.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24632611</pmid><doi>10.1038/onc.2014.38</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2015-02, Vol.34 (8), p.1058-1063 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1664199323 |
source | MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | 631/337/1427 631/45/612/645 631/80/86/2371 692/420/755 Adaptor Proteins, Signal Transducing - metabolism Apoptosis Cancer Cell Biology Cell survival Cellular proteins Checkpoint Kinase 1 CHK1 protein Deoxyribonucleic acid DNA DNA biosynthesis DNA damage DNA replication DNA Replication - genetics Genetic aspects Genetic research Genomes Genotoxicity HEK293 Cells Human Genetics Humans Internal Medicine Medicine Medicine & Public Health Oncology Peptidase Phosphorylation Properties Proteasomes Protein Kinases - metabolism Protein Processing, Post-Translational - genetics Protein Stability Proteolysis Replication short-communication Studies Tumor Cells, Cultured Ubiquitin Ubiquitin Thiolesterase - metabolism Ubiquitin-proteasome system Ubiquitin-Specific Peptidase 7 Ubiquitin-Specific Proteases - genetics Ubiquitin-Specific Proteases - physiology Ubiquitination - genetics Yeast |
title | USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=USP29%20controls%20the%20stability%20of%20checkpoint%20adaptor%20Claspin%20by%20deubiquitination&rft.jtitle=Oncogene&rft.au=Mart%C3%ADn,%20Y&rft.date=2015-02-19&rft.volume=34&rft.issue=8&rft.spage=1058&rft.epage=1063&rft.pages=1058-1063&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2014.38&rft_dat=%3Cgale_proqu%3EA403448818%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656063104&rft_id=info:pmid/24632611&rft_galeid=A403448818&rfr_iscdi=true |