Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from huma...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2014-09, Vol.17 (9), p.1180-1189 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1189 |
---|---|
container_issue | 9 |
container_start_page | 1180 |
container_title | Nature neuroscience |
container_volume | 17 |
creator | Cortes, Constanza J Miranda, Helen C Frankowski, Harald Batlevi, Yakup Young, Jessica E Le, Amy Ivanov, Nishi Sopher, Bryce L Carromeu, Cassiano Muotri, Alysson R Garden, Gwenn A La Spada, Albert R |
description | Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from human patients and that this results from an impaired interaction between AR and the transcription factor TFEB.
Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron–like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis. |
doi_str_mv | 10.1038/nn.3787 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664195648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382150460</galeid><sourcerecordid>A382150460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-5de3ae4f161d592b8bdabb65c45bcacdf18ee58906e3c3e2e09a84d40bb87e513</originalsourceid><addsrcrecordid>eNqFktFr1TAUxoMobl7F_0ACPqgPvSZpk6aPd2PTwURx8zmk6WmX0SZdkuLuf28um847BAkkh-T3feQ7HIReU7KmpJQfnVuXtayfoEPKK1HQmomnuSZNXQjGxQF6EeM1IaTmsnmODhinRDaUHSL9zY_bYVySnqyDAm5n7TrocN6DH8DhAAbm5AO2LkHoIUDEP226wpenJ0c4eQyjNTZhvSQ_X-lhizvowaSYBfji6MvmJXrW6zHCq_tzhX6cnlwefy7Ov346O96cF4bXTSp4B6WGqqeCdrxhrWw73baCm4q3RpuupxIg_54IKE0JDEijZdVVpG1lDZyWK_T-zncO_maBmNRko4Fx1A78EhUVoqINF5X8P8q55KxucmtX6O0j9NovweUg2ZCLkpVUsAdq0CMo63qfgjY7U7UpJaOcVGLntf4HlVcHkzXeQW_z_Z7gw54gMwlu06CXGNXZxfd99t0da4KPMUCv5mAnHbaKErWbEeWc2s1IJt_cR1raCbo_3O-heGhPzE9ugPBX5kdevwBreMF9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656323162</pqid></control><display><type>article</type><title>Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Cortes, Constanza J ; Miranda, Helen C ; Frankowski, Harald ; Batlevi, Yakup ; Young, Jessica E ; Le, Amy ; Ivanov, Nishi ; Sopher, Bryce L ; Carromeu, Cassiano ; Muotri, Alysson R ; Garden, Gwenn A ; La Spada, Albert R</creator><creatorcontrib>Cortes, Constanza J ; Miranda, Helen C ; Frankowski, Harald ; Batlevi, Yakup ; Young, Jessica E ; Le, Amy ; Ivanov, Nishi ; Sopher, Bryce L ; Carromeu, Cassiano ; Muotri, Alysson R ; Garden, Gwenn A ; La Spada, Albert R</creatorcontrib><description>Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from human patients and that this results from an impaired interaction between AR and the transcription factor TFEB.
Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron–like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3787</identifier><identifier>PMID: 25108912</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/44 ; 13/51 ; 14/19 ; 14/28 ; 38/88 ; 42/100 ; 631/378/1689/364 ; 631/378/340 ; 631/80/39/2346 ; 64/110 ; Alzheimer's disease ; Androgens ; Animal Genetics and Genomics ; Animals ; Atrophy ; Autophagy ; Autophagy - physiology ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Cellular Reprogramming - physiology ; Disease Models, Animal ; Female ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Humans ; Huntingtons disease ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Male ; Mice, Transgenic ; Motor Neurons - metabolism ; Motor Neurons - pathology ; Muscular Disorders, Atrophic - metabolism ; Muscular Disorders, Atrophic - pathology ; Neurobiology ; Neurodegeneration ; Neurons ; Neurosciences ; Parkinson's disease ; Pathogenesis ; Peptides - metabolism ; Phagosomes - physiology ; Physiological aspects ; Proteins ; Quality control ; Receptors, Androgen - metabolism ; Stem cells ; Transcription factors</subject><ispartof>Nature neuroscience, 2014-09, Vol.17 (9), p.1180-1189</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-5de3ae4f161d592b8bdabb65c45bcacdf18ee58906e3c3e2e09a84d40bb87e513</citedby><cites>FETCH-LOGICAL-c579t-5de3ae4f161d592b8bdabb65c45bcacdf18ee58906e3c3e2e09a84d40bb87e513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3787$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3787$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25108912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cortes, Constanza J</creatorcontrib><creatorcontrib>Miranda, Helen C</creatorcontrib><creatorcontrib>Frankowski, Harald</creatorcontrib><creatorcontrib>Batlevi, Yakup</creatorcontrib><creatorcontrib>Young, Jessica E</creatorcontrib><creatorcontrib>Le, Amy</creatorcontrib><creatorcontrib>Ivanov, Nishi</creatorcontrib><creatorcontrib>Sopher, Bryce L</creatorcontrib><creatorcontrib>Carromeu, Cassiano</creatorcontrib><creatorcontrib>Muotri, Alysson R</creatorcontrib><creatorcontrib>Garden, Gwenn A</creatorcontrib><creatorcontrib>La Spada, Albert R</creatorcontrib><title>Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from human patients and that this results from an impaired interaction between AR and the transcription factor TFEB.
Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron–like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.</description><subject>13/1</subject><subject>13/44</subject><subject>13/51</subject><subject>14/19</subject><subject>14/28</subject><subject>38/88</subject><subject>42/100</subject><subject>631/378/1689/364</subject><subject>631/378/340</subject><subject>631/80/39/2346</subject><subject>64/110</subject><subject>Alzheimer's disease</subject><subject>Androgens</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Cellular Reprogramming - physiology</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Huntingtons disease</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Male</subject><subject>Mice, Transgenic</subject><subject>Motor Neurons - metabolism</subject><subject>Motor Neurons - pathology</subject><subject>Muscular Disorders, Atrophic - metabolism</subject><subject>Muscular Disorders, Atrophic - pathology</subject><subject>Neurobiology</subject><subject>Neurodegeneration</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>Peptides - metabolism</subject><subject>Phagosomes - physiology</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Receptors, Androgen - metabolism</subject><subject>Stem cells</subject><subject>Transcription factors</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFktFr1TAUxoMobl7F_0ACPqgPvSZpk6aPd2PTwURx8zmk6WmX0SZdkuLuf28um847BAkkh-T3feQ7HIReU7KmpJQfnVuXtayfoEPKK1HQmomnuSZNXQjGxQF6EeM1IaTmsnmODhinRDaUHSL9zY_bYVySnqyDAm5n7TrocN6DH8DhAAbm5AO2LkHoIUDEP226wpenJ0c4eQyjNTZhvSQ_X-lhizvowaSYBfji6MvmJXrW6zHCq_tzhX6cnlwefy7Ov346O96cF4bXTSp4B6WGqqeCdrxhrWw73baCm4q3RpuupxIg_54IKE0JDEijZdVVpG1lDZyWK_T-zncO_maBmNRko4Fx1A78EhUVoqINF5X8P8q55KxucmtX6O0j9NovweUg2ZCLkpVUsAdq0CMo63qfgjY7U7UpJaOcVGLntf4HlVcHkzXeQW_z_Z7gw54gMwlu06CXGNXZxfd99t0da4KPMUCv5mAnHbaKErWbEeWc2s1IJt_cR1raCbo_3O-heGhPzE9ugPBX5kdevwBreMF9</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Cortes, Constanza J</creator><creator>Miranda, Helen C</creator><creator>Frankowski, Harald</creator><creator>Batlevi, Yakup</creator><creator>Young, Jessica E</creator><creator>Le, Amy</creator><creator>Ivanov, Nishi</creator><creator>Sopher, Bryce L</creator><creator>Carromeu, Cassiano</creator><creator>Muotri, Alysson R</creator><creator>Garden, Gwenn A</creator><creator>La Spada, Albert R</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA</title><author>Cortes, Constanza J ; Miranda, Helen C ; Frankowski, Harald ; Batlevi, Yakup ; Young, Jessica E ; Le, Amy ; Ivanov, Nishi ; Sopher, Bryce L ; Carromeu, Cassiano ; Muotri, Alysson R ; Garden, Gwenn A ; La Spada, Albert R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-5de3ae4f161d592b8bdabb65c45bcacdf18ee58906e3c3e2e09a84d40bb87e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13/1</topic><topic>13/44</topic><topic>13/51</topic><topic>14/19</topic><topic>14/28</topic><topic>38/88</topic><topic>42/100</topic><topic>631/378/1689/364</topic><topic>631/378/340</topic><topic>631/80/39/2346</topic><topic>64/110</topic><topic>Alzheimer's disease</topic><topic>Androgens</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Cellular Reprogramming - physiology</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Huntingtons disease</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Male</topic><topic>Mice, Transgenic</topic><topic>Motor Neurons - metabolism</topic><topic>Motor Neurons - pathology</topic><topic>Muscular Disorders, Atrophic - metabolism</topic><topic>Muscular Disorders, Atrophic - pathology</topic><topic>Neurobiology</topic><topic>Neurodegeneration</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>Peptides - metabolism</topic><topic>Phagosomes - physiology</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Receptors, Androgen - metabolism</topic><topic>Stem cells</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortes, Constanza J</creatorcontrib><creatorcontrib>Miranda, Helen C</creatorcontrib><creatorcontrib>Frankowski, Harald</creatorcontrib><creatorcontrib>Batlevi, Yakup</creatorcontrib><creatorcontrib>Young, Jessica E</creatorcontrib><creatorcontrib>Le, Amy</creatorcontrib><creatorcontrib>Ivanov, Nishi</creatorcontrib><creatorcontrib>Sopher, Bryce L</creatorcontrib><creatorcontrib>Carromeu, Cassiano</creatorcontrib><creatorcontrib>Muotri, Alysson R</creatorcontrib><creatorcontrib>Garden, Gwenn A</creatorcontrib><creatorcontrib>La Spada, Albert R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortes, Constanza J</au><au>Miranda, Helen C</au><au>Frankowski, Harald</au><au>Batlevi, Yakup</au><au>Young, Jessica E</au><au>Le, Amy</au><au>Ivanov, Nishi</au><au>Sopher, Bryce L</au><au>Carromeu, Cassiano</au><au>Muotri, Alysson R</au><au>Garden, Gwenn A</au><au>La Spada, Albert R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>17</volume><issue>9</issue><spage>1180</spage><epage>1189</epage><pages>1180-1189</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from human patients and that this results from an impaired interaction between AR and the transcription factor TFEB.
Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron–like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25108912</pmid><doi>10.1038/nn.3787</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2014-09, Vol.17 (9), p.1180-1189 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_1664195648 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13/1 13/44 13/51 14/19 14/28 38/88 42/100 631/378/1689/364 631/378/340 631/80/39/2346 64/110 Alzheimer's disease Androgens Animal Genetics and Genomics Animals Atrophy Autophagy Autophagy - physiology Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism Behavioral Sciences Biological Techniques Biomedicine Cellular Reprogramming - physiology Disease Models, Animal Female Fibroblasts Fibroblasts - cytology Fibroblasts - metabolism Humans Huntingtons disease Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Male Mice, Transgenic Motor Neurons - metabolism Motor Neurons - pathology Muscular Disorders, Atrophic - metabolism Muscular Disorders, Atrophic - pathology Neurobiology Neurodegeneration Neurons Neurosciences Parkinson's disease Pathogenesis Peptides - metabolism Phagosomes - physiology Physiological aspects Proteins Quality control Receptors, Androgen - metabolism Stem cells Transcription factors |
title | Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyglutamine-expanded%20androgen%20receptor%20interferes%20with%20TFEB%20to%20elicit%20autophagy%20defects%20in%20SBMA&rft.jtitle=Nature%20neuroscience&rft.au=Cortes,%20Constanza%20J&rft.date=2014-09-01&rft.volume=17&rft.issue=9&rft.spage=1180&rft.epage=1189&rft.pages=1180-1189&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3787&rft_dat=%3Cgale_proqu%3EA382150460%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656323162&rft_id=info:pmid/25108912&rft_galeid=A382150460&rfr_iscdi=true |