Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA

Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from huma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2014-09, Vol.17 (9), p.1180-1189
Hauptverfasser: Cortes, Constanza J, Miranda, Helen C, Frankowski, Harald, Batlevi, Yakup, Young, Jessica E, Le, Amy, Ivanov, Nishi, Sopher, Bryce L, Carromeu, Cassiano, Muotri, Alysson R, Garden, Gwenn A, La Spada, Albert R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1189
container_issue 9
container_start_page 1180
container_title Nature neuroscience
container_volume 17
creator Cortes, Constanza J
Miranda, Helen C
Frankowski, Harald
Batlevi, Yakup
Young, Jessica E
Le, Amy
Ivanov, Nishi
Sopher, Bryce L
Carromeu, Cassiano
Muotri, Alysson R
Garden, Gwenn A
La Spada, Albert R
description Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from human patients and that this results from an impaired interaction between AR and the transcription factor TFEB. Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron–like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.
doi_str_mv 10.1038/nn.3787
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1664195648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382150460</galeid><sourcerecordid>A382150460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-5de3ae4f161d592b8bdabb65c45bcacdf18ee58906e3c3e2e09a84d40bb87e513</originalsourceid><addsrcrecordid>eNqFktFr1TAUxoMobl7F_0ACPqgPvSZpk6aPd2PTwURx8zmk6WmX0SZdkuLuf28um847BAkkh-T3feQ7HIReU7KmpJQfnVuXtayfoEPKK1HQmomnuSZNXQjGxQF6EeM1IaTmsnmODhinRDaUHSL9zY_bYVySnqyDAm5n7TrocN6DH8DhAAbm5AO2LkHoIUDEP226wpenJ0c4eQyjNTZhvSQ_X-lhizvowaSYBfji6MvmJXrW6zHCq_tzhX6cnlwefy7Ov346O96cF4bXTSp4B6WGqqeCdrxhrWw73baCm4q3RpuupxIg_54IKE0JDEijZdVVpG1lDZyWK_T-zncO_maBmNRko4Fx1A78EhUVoqINF5X8P8q55KxucmtX6O0j9NovweUg2ZCLkpVUsAdq0CMo63qfgjY7U7UpJaOcVGLntf4HlVcHkzXeQW_z_Z7gw54gMwlu06CXGNXZxfd99t0da4KPMUCv5mAnHbaKErWbEeWc2s1IJt_cR1raCbo_3O-heGhPzE9ugPBX5kdevwBreMF9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656323162</pqid></control><display><type>article</type><title>Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Cortes, Constanza J ; Miranda, Helen C ; Frankowski, Harald ; Batlevi, Yakup ; Young, Jessica E ; Le, Amy ; Ivanov, Nishi ; Sopher, Bryce L ; Carromeu, Cassiano ; Muotri, Alysson R ; Garden, Gwenn A ; La Spada, Albert R</creator><creatorcontrib>Cortes, Constanza J ; Miranda, Helen C ; Frankowski, Harald ; Batlevi, Yakup ; Young, Jessica E ; Le, Amy ; Ivanov, Nishi ; Sopher, Bryce L ; Carromeu, Cassiano ; Muotri, Alysson R ; Garden, Gwenn A ; La Spada, Albert R</creatorcontrib><description>Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from human patients and that this results from an impaired interaction between AR and the transcription factor TFEB. Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron–like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3787</identifier><identifier>PMID: 25108912</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/44 ; 13/51 ; 14/19 ; 14/28 ; 38/88 ; 42/100 ; 631/378/1689/364 ; 631/378/340 ; 631/80/39/2346 ; 64/110 ; Alzheimer's disease ; Androgens ; Animal Genetics and Genomics ; Animals ; Atrophy ; Autophagy ; Autophagy - physiology ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Cellular Reprogramming - physiology ; Disease Models, Animal ; Female ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Humans ; Huntingtons disease ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Male ; Mice, Transgenic ; Motor Neurons - metabolism ; Motor Neurons - pathology ; Muscular Disorders, Atrophic - metabolism ; Muscular Disorders, Atrophic - pathology ; Neurobiology ; Neurodegeneration ; Neurons ; Neurosciences ; Parkinson's disease ; Pathogenesis ; Peptides - metabolism ; Phagosomes - physiology ; Physiological aspects ; Proteins ; Quality control ; Receptors, Androgen - metabolism ; Stem cells ; Transcription factors</subject><ispartof>Nature neuroscience, 2014-09, Vol.17 (9), p.1180-1189</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-5de3ae4f161d592b8bdabb65c45bcacdf18ee58906e3c3e2e09a84d40bb87e513</citedby><cites>FETCH-LOGICAL-c579t-5de3ae4f161d592b8bdabb65c45bcacdf18ee58906e3c3e2e09a84d40bb87e513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3787$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3787$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25108912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cortes, Constanza J</creatorcontrib><creatorcontrib>Miranda, Helen C</creatorcontrib><creatorcontrib>Frankowski, Harald</creatorcontrib><creatorcontrib>Batlevi, Yakup</creatorcontrib><creatorcontrib>Young, Jessica E</creatorcontrib><creatorcontrib>Le, Amy</creatorcontrib><creatorcontrib>Ivanov, Nishi</creatorcontrib><creatorcontrib>Sopher, Bryce L</creatorcontrib><creatorcontrib>Carromeu, Cassiano</creatorcontrib><creatorcontrib>Muotri, Alysson R</creatorcontrib><creatorcontrib>Garden, Gwenn A</creatorcontrib><creatorcontrib>La Spada, Albert R</creatorcontrib><title>Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from human patients and that this results from an impaired interaction between AR and the transcription factor TFEB. Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron–like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.</description><subject>13/1</subject><subject>13/44</subject><subject>13/51</subject><subject>14/19</subject><subject>14/28</subject><subject>38/88</subject><subject>42/100</subject><subject>631/378/1689/364</subject><subject>631/378/340</subject><subject>631/80/39/2346</subject><subject>64/110</subject><subject>Alzheimer's disease</subject><subject>Androgens</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Cellular Reprogramming - physiology</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Huntingtons disease</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Male</subject><subject>Mice, Transgenic</subject><subject>Motor Neurons - metabolism</subject><subject>Motor Neurons - pathology</subject><subject>Muscular Disorders, Atrophic - metabolism</subject><subject>Muscular Disorders, Atrophic - pathology</subject><subject>Neurobiology</subject><subject>Neurodegeneration</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>Peptides - metabolism</subject><subject>Phagosomes - physiology</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Receptors, Androgen - metabolism</subject><subject>Stem cells</subject><subject>Transcription factors</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFktFr1TAUxoMobl7F_0ACPqgPvSZpk6aPd2PTwURx8zmk6WmX0SZdkuLuf28um847BAkkh-T3feQ7HIReU7KmpJQfnVuXtayfoEPKK1HQmomnuSZNXQjGxQF6EeM1IaTmsnmODhinRDaUHSL9zY_bYVySnqyDAm5n7TrocN6DH8DhAAbm5AO2LkHoIUDEP226wpenJ0c4eQyjNTZhvSQ_X-lhizvowaSYBfji6MvmJXrW6zHCq_tzhX6cnlwefy7Ov346O96cF4bXTSp4B6WGqqeCdrxhrWw73baCm4q3RpuupxIg_54IKE0JDEijZdVVpG1lDZyWK_T-zncO_maBmNRko4Fx1A78EhUVoqINF5X8P8q55KxucmtX6O0j9NovweUg2ZCLkpVUsAdq0CMo63qfgjY7U7UpJaOcVGLntf4HlVcHkzXeQW_z_Z7gw54gMwlu06CXGNXZxfd99t0da4KPMUCv5mAnHbaKErWbEeWc2s1IJt_cR1raCbo_3O-heGhPzE9ugPBX5kdevwBreMF9</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Cortes, Constanza J</creator><creator>Miranda, Helen C</creator><creator>Frankowski, Harald</creator><creator>Batlevi, Yakup</creator><creator>Young, Jessica E</creator><creator>Le, Amy</creator><creator>Ivanov, Nishi</creator><creator>Sopher, Bryce L</creator><creator>Carromeu, Cassiano</creator><creator>Muotri, Alysson R</creator><creator>Garden, Gwenn A</creator><creator>La Spada, Albert R</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA</title><author>Cortes, Constanza J ; Miranda, Helen C ; Frankowski, Harald ; Batlevi, Yakup ; Young, Jessica E ; Le, Amy ; Ivanov, Nishi ; Sopher, Bryce L ; Carromeu, Cassiano ; Muotri, Alysson R ; Garden, Gwenn A ; La Spada, Albert R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-5de3ae4f161d592b8bdabb65c45bcacdf18ee58906e3c3e2e09a84d40bb87e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13/1</topic><topic>13/44</topic><topic>13/51</topic><topic>14/19</topic><topic>14/28</topic><topic>38/88</topic><topic>42/100</topic><topic>631/378/1689/364</topic><topic>631/378/340</topic><topic>631/80/39/2346</topic><topic>64/110</topic><topic>Alzheimer's disease</topic><topic>Androgens</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Cellular Reprogramming - physiology</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Huntingtons disease</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Male</topic><topic>Mice, Transgenic</topic><topic>Motor Neurons - metabolism</topic><topic>Motor Neurons - pathology</topic><topic>Muscular Disorders, Atrophic - metabolism</topic><topic>Muscular Disorders, Atrophic - pathology</topic><topic>Neurobiology</topic><topic>Neurodegeneration</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>Peptides - metabolism</topic><topic>Phagosomes - physiology</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Receptors, Androgen - metabolism</topic><topic>Stem cells</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortes, Constanza J</creatorcontrib><creatorcontrib>Miranda, Helen C</creatorcontrib><creatorcontrib>Frankowski, Harald</creatorcontrib><creatorcontrib>Batlevi, Yakup</creatorcontrib><creatorcontrib>Young, Jessica E</creatorcontrib><creatorcontrib>Le, Amy</creatorcontrib><creatorcontrib>Ivanov, Nishi</creatorcontrib><creatorcontrib>Sopher, Bryce L</creatorcontrib><creatorcontrib>Carromeu, Cassiano</creatorcontrib><creatorcontrib>Muotri, Alysson R</creatorcontrib><creatorcontrib>Garden, Gwenn A</creatorcontrib><creatorcontrib>La Spada, Albert R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortes, Constanza J</au><au>Miranda, Helen C</au><au>Frankowski, Harald</au><au>Batlevi, Yakup</au><au>Young, Jessica E</au><au>Le, Amy</au><au>Ivanov, Nishi</au><au>Sopher, Bryce L</au><au>Carromeu, Cassiano</au><au>Muotri, Alysson R</au><au>Garden, Gwenn A</au><au>La Spada, Albert R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>17</volume><issue>9</issue><spage>1180</spage><epage>1189</epage><pages>1180-1189</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that results from a polyglutamine repeat expansion in the androgen receptor (polyQ-AR). In this study, the authors show that autophagy is dysregulated in SBMA mice and in neural precursors obtained from iPSCs derived from human patients and that this results from an impaired interaction between AR and the transcription factor TFEB. Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron–like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25108912</pmid><doi>10.1038/nn.3787</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2014-09, Vol.17 (9), p.1180-1189
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_1664195648
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13/1
13/44
13/51
14/19
14/28
38/88
42/100
631/378/1689/364
631/378/340
631/80/39/2346
64/110
Alzheimer's disease
Androgens
Animal Genetics and Genomics
Animals
Atrophy
Autophagy
Autophagy - physiology
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism
Behavioral Sciences
Biological Techniques
Biomedicine
Cellular Reprogramming - physiology
Disease Models, Animal
Female
Fibroblasts
Fibroblasts - cytology
Fibroblasts - metabolism
Humans
Huntingtons disease
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Male
Mice, Transgenic
Motor Neurons - metabolism
Motor Neurons - pathology
Muscular Disorders, Atrophic - metabolism
Muscular Disorders, Atrophic - pathology
Neurobiology
Neurodegeneration
Neurons
Neurosciences
Parkinson's disease
Pathogenesis
Peptides - metabolism
Phagosomes - physiology
Physiological aspects
Proteins
Quality control
Receptors, Androgen - metabolism
Stem cells
Transcription factors
title Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyglutamine-expanded%20androgen%20receptor%20interferes%20with%20TFEB%20to%20elicit%20autophagy%20defects%20in%20SBMA&rft.jtitle=Nature%20neuroscience&rft.au=Cortes,%20Constanza%20J&rft.date=2014-09-01&rft.volume=17&rft.issue=9&rft.spage=1180&rft.epage=1189&rft.pages=1180-1189&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3787&rft_dat=%3Cgale_proqu%3EA382150460%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656323162&rft_id=info:pmid/25108912&rft_galeid=A382150460&rfr_iscdi=true