Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations
Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for t...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2015-01, Vol.8 (2), p.315-322 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 2 |
container_start_page | 315 |
container_title | ChemSusChem |
container_volume | 8 |
creator | Lee, Kyungtae Gu, Geun Ho Mullen, Charles A Boateng, Akwasi A Vlachos, Dionisios G |
description | Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x |
doi_str_mv | 10.1002/cssc.201402940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1663626090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652436840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6410-8cfe524a5c6dd02a74f6c4eea9b4fad582cbac02f0005480d344556810b79b8f3</originalsourceid><addsrcrecordid>eNqNkU1v1DAURSMEoh-wZQmW2JRFBtuxnYQdmnamVYeCmJaysxznZcZtEhc7EQ2_HoeUEWIDK9vSuUfP70bRC4JnBGP6VnuvZxQThmnO8KNon2SCxVywr49394TsRQfe32AscC7E02iPcpbiNMv3ox_LXhmlbY1Oh9LZEuz9sIFWdca26APorWqNb1B4fOqOCCFv3qGz1pvNtvOocrZBxxCe3YAWfavHkKrR5RasG5BqS7QyLSiHFg4AnbTgNgP6DPUvu38WPalU7eH5w3kYXS1OLuen8erj8mz-fhVrwQiOM10Bp0xxLcoSU5WySmgGoPKCVarkGdWF0phWGGPOMlwmjHEuMoKLNC-yKjmMjibvnbPfevCdbIzXUNeqBdt7SYRIBA2rwf-BhkkSkbERff0XemN7F74fqJQnIqE0p4GaTZR21nsHlbxzplFukATLsUA5Fih3BYbAywdtXzRQ7vDfjQUgn4DvpobhHzo5X6_nf8rjKWt8B_e7rHK3UqRJyuX1xVJery7OzxfsixynfzXxlbJSbZzx8moddDysOhWM0eQngkG_PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753632292</pqid></control><display><type>article</type><title>Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Kyungtae ; Gu, Geun Ho ; Mullen, Charles A ; Boateng, Akwasi A ; Vlachos, Dionisios G</creator><creatorcontrib>Lee, Kyungtae ; Gu, Geun Ho ; Mullen, Charles A ; Boateng, Akwasi A ; Vlachos, Dionisios G</creatorcontrib><description>Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x<3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201402940</identifier><identifier>PMID: 25470789</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Adsorption ; biomass ; carbon ; catechol ; Catechols - chemistry ; DFT ; energy ; guaiacol ; Guaiacol - chemistry ; hydrodeoxygenation ; Hydrogenation ; Models, Molecular ; Molecular Conformation ; phenol ; platinum ; Platinum - chemistry ; Quantum Theory ; Thermodynamics</subject><ispartof>ChemSusChem, 2015-01, Vol.8 (2), p.315-322</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6410-8cfe524a5c6dd02a74f6c4eea9b4fad582cbac02f0005480d344556810b79b8f3</citedby><cites>FETCH-LOGICAL-c6410-8cfe524a5c6dd02a74f6c4eea9b4fad582cbac02f0005480d344556810b79b8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201402940$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201402940$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25470789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Kyungtae</creatorcontrib><creatorcontrib>Gu, Geun Ho</creatorcontrib><creatorcontrib>Mullen, Charles A</creatorcontrib><creatorcontrib>Boateng, Akwasi A</creatorcontrib><creatorcontrib>Vlachos, Dionisios G</creatorcontrib><title>Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x<3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation.</description><subject>Adsorption</subject><subject>biomass</subject><subject>carbon</subject><subject>catechol</subject><subject>Catechols - chemistry</subject><subject>DFT</subject><subject>energy</subject><subject>guaiacol</subject><subject>Guaiacol - chemistry</subject><subject>hydrodeoxygenation</subject><subject>Hydrogenation</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>phenol</subject><subject>platinum</subject><subject>Platinum - chemistry</subject><subject>Quantum Theory</subject><subject>Thermodynamics</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAURSMEoh-wZQmW2JRFBtuxnYQdmnamVYeCmJaysxznZcZtEhc7EQ2_HoeUEWIDK9vSuUfP70bRC4JnBGP6VnuvZxQThmnO8KNon2SCxVywr49394TsRQfe32AscC7E02iPcpbiNMv3ox_LXhmlbY1Oh9LZEuz9sIFWdca26APorWqNb1B4fOqOCCFv3qGz1pvNtvOocrZBxxCe3YAWfavHkKrR5RasG5BqS7QyLSiHFg4AnbTgNgP6DPUvu38WPalU7eH5w3kYXS1OLuen8erj8mz-fhVrwQiOM10Bp0xxLcoSU5WySmgGoPKCVarkGdWF0phWGGPOMlwmjHEuMoKLNC-yKjmMjibvnbPfevCdbIzXUNeqBdt7SYRIBA2rwf-BhkkSkbERff0XemN7F74fqJQnIqE0p4GaTZR21nsHlbxzplFukATLsUA5Fih3BYbAywdtXzRQ7vDfjQUgn4DvpobhHzo5X6_nf8rjKWt8B_e7rHK3UqRJyuX1xVJery7OzxfsixynfzXxlbJSbZzx8moddDysOhWM0eQngkG_PA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Lee, Kyungtae</creator><creator>Gu, Geun Ho</creator><creator>Mullen, Charles A</creator><creator>Boateng, Akwasi A</creator><creator>Vlachos, Dionisios G</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>201501</creationdate><title>Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations</title><author>Lee, Kyungtae ; Gu, Geun Ho ; Mullen, Charles A ; Boateng, Akwasi A ; Vlachos, Dionisios G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6410-8cfe524a5c6dd02a74f6c4eea9b4fad582cbac02f0005480d344556810b79b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>biomass</topic><topic>carbon</topic><topic>catechol</topic><topic>Catechols - chemistry</topic><topic>DFT</topic><topic>energy</topic><topic>guaiacol</topic><topic>Guaiacol - chemistry</topic><topic>hydrodeoxygenation</topic><topic>Hydrogenation</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>phenol</topic><topic>platinum</topic><topic>Platinum - chemistry</topic><topic>Quantum Theory</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyungtae</creatorcontrib><creatorcontrib>Gu, Geun Ho</creatorcontrib><creatorcontrib>Mullen, Charles A</creatorcontrib><creatorcontrib>Boateng, Akwasi A</creatorcontrib><creatorcontrib>Vlachos, Dionisios G</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyungtae</au><au>Gu, Geun Ho</au><au>Mullen, Charles A</au><au>Boateng, Akwasi A</au><au>Vlachos, Dionisios G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2015-01</date><risdate>2015</risdate><volume>8</volume><issue>2</issue><spage>315</spage><epage>322</epage><pages>315-322</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x<3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25470789</pmid><doi>10.1002/cssc.201402940</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2015-01, Vol.8 (2), p.315-322 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_1663626090 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adsorption biomass carbon catechol Catechols - chemistry DFT energy guaiacol Guaiacol - chemistry hydrodeoxygenation Hydrogenation Models, Molecular Molecular Conformation phenol platinum Platinum - chemistry Quantum Theory Thermodynamics |
title | Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guaiacol%20Hydrodeoxygenation%20Mechanism%20on%20Pt(111):%20Insights%20from%20Density%20Functional%20Theory%20and%20Linear%20Free%20Energy%20Relations&rft.jtitle=ChemSusChem&rft.au=Lee,%20Kyungtae&rft.date=2015-01&rft.volume=8&rft.issue=2&rft.spage=315&rft.epage=322&rft.pages=315-322&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201402940&rft_dat=%3Cproquest_cross%3E1652436840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753632292&rft_id=info:pmid/25470789&rfr_iscdi=true |