Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations

Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2015-01, Vol.8 (2), p.315-322
Hauptverfasser: Lee, Kyungtae, Gu, Geun Ho, Mullen, Charles A, Boateng, Akwasi A, Vlachos, Dionisios G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 2
container_start_page 315
container_title ChemSusChem
container_volume 8
creator Lee, Kyungtae
Gu, Geun Ho
Mullen, Charles A
Boateng, Akwasi A
Vlachos, Dionisios G
description Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x
doi_str_mv 10.1002/cssc.201402940
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1663626090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652436840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6410-8cfe524a5c6dd02a74f6c4eea9b4fad582cbac02f0005480d344556810b79b8f3</originalsourceid><addsrcrecordid>eNqNkU1v1DAURSMEoh-wZQmW2JRFBtuxnYQdmnamVYeCmJaysxznZcZtEhc7EQ2_HoeUEWIDK9vSuUfP70bRC4JnBGP6VnuvZxQThmnO8KNon2SCxVywr49394TsRQfe32AscC7E02iPcpbiNMv3ox_LXhmlbY1Oh9LZEuz9sIFWdca26APorWqNb1B4fOqOCCFv3qGz1pvNtvOocrZBxxCe3YAWfavHkKrR5RasG5BqS7QyLSiHFg4AnbTgNgP6DPUvu38WPalU7eH5w3kYXS1OLuen8erj8mz-fhVrwQiOM10Bp0xxLcoSU5WySmgGoPKCVarkGdWF0phWGGPOMlwmjHEuMoKLNC-yKjmMjibvnbPfevCdbIzXUNeqBdt7SYRIBA2rwf-BhkkSkbERff0XemN7F74fqJQnIqE0p4GaTZR21nsHlbxzplFukATLsUA5Fih3BYbAywdtXzRQ7vDfjQUgn4DvpobhHzo5X6_nf8rjKWt8B_e7rHK3UqRJyuX1xVJery7OzxfsixynfzXxlbJSbZzx8moddDysOhWM0eQngkG_PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753632292</pqid></control><display><type>article</type><title>Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Kyungtae ; Gu, Geun Ho ; Mullen, Charles A ; Boateng, Akwasi A ; Vlachos, Dionisios G</creator><creatorcontrib>Lee, Kyungtae ; Gu, Geun Ho ; Mullen, Charles A ; Boateng, Akwasi A ; Vlachos, Dionisios G</creatorcontrib><description>Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x&lt;3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201402940</identifier><identifier>PMID: 25470789</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Adsorption ; biomass ; carbon ; catechol ; Catechols - chemistry ; DFT ; energy ; guaiacol ; Guaiacol - chemistry ; hydrodeoxygenation ; Hydrogenation ; Models, Molecular ; Molecular Conformation ; phenol ; platinum ; Platinum - chemistry ; Quantum Theory ; Thermodynamics</subject><ispartof>ChemSusChem, 2015-01, Vol.8 (2), p.315-322</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6410-8cfe524a5c6dd02a74f6c4eea9b4fad582cbac02f0005480d344556810b79b8f3</citedby><cites>FETCH-LOGICAL-c6410-8cfe524a5c6dd02a74f6c4eea9b4fad582cbac02f0005480d344556810b79b8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201402940$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201402940$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25470789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Kyungtae</creatorcontrib><creatorcontrib>Gu, Geun Ho</creatorcontrib><creatorcontrib>Mullen, Charles A</creatorcontrib><creatorcontrib>Boateng, Akwasi A</creatorcontrib><creatorcontrib>Vlachos, Dionisios G</creatorcontrib><title>Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x&lt;3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation.</description><subject>Adsorption</subject><subject>biomass</subject><subject>carbon</subject><subject>catechol</subject><subject>Catechols - chemistry</subject><subject>DFT</subject><subject>energy</subject><subject>guaiacol</subject><subject>Guaiacol - chemistry</subject><subject>hydrodeoxygenation</subject><subject>Hydrogenation</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>phenol</subject><subject>platinum</subject><subject>Platinum - chemistry</subject><subject>Quantum Theory</subject><subject>Thermodynamics</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAURSMEoh-wZQmW2JRFBtuxnYQdmnamVYeCmJaysxznZcZtEhc7EQ2_HoeUEWIDK9vSuUfP70bRC4JnBGP6VnuvZxQThmnO8KNon2SCxVywr49394TsRQfe32AscC7E02iPcpbiNMv3ox_LXhmlbY1Oh9LZEuz9sIFWdca26APorWqNb1B4fOqOCCFv3qGz1pvNtvOocrZBxxCe3YAWfavHkKrR5RasG5BqS7QyLSiHFg4AnbTgNgP6DPUvu38WPalU7eH5w3kYXS1OLuen8erj8mz-fhVrwQiOM10Bp0xxLcoSU5WySmgGoPKCVarkGdWF0phWGGPOMlwmjHEuMoKLNC-yKjmMjibvnbPfevCdbIzXUNeqBdt7SYRIBA2rwf-BhkkSkbERff0XemN7F74fqJQnIqE0p4GaTZR21nsHlbxzplFukATLsUA5Fih3BYbAywdtXzRQ7vDfjQUgn4DvpobhHzo5X6_nf8rjKWt8B_e7rHK3UqRJyuX1xVJery7OzxfsixynfzXxlbJSbZzx8moddDysOhWM0eQngkG_PA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Lee, Kyungtae</creator><creator>Gu, Geun Ho</creator><creator>Mullen, Charles A</creator><creator>Boateng, Akwasi A</creator><creator>Vlachos, Dionisios G</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>201501</creationdate><title>Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations</title><author>Lee, Kyungtae ; Gu, Geun Ho ; Mullen, Charles A ; Boateng, Akwasi A ; Vlachos, Dionisios G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6410-8cfe524a5c6dd02a74f6c4eea9b4fad582cbac02f0005480d344556810b79b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>biomass</topic><topic>carbon</topic><topic>catechol</topic><topic>Catechols - chemistry</topic><topic>DFT</topic><topic>energy</topic><topic>guaiacol</topic><topic>Guaiacol - chemistry</topic><topic>hydrodeoxygenation</topic><topic>Hydrogenation</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>phenol</topic><topic>platinum</topic><topic>Platinum - chemistry</topic><topic>Quantum Theory</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyungtae</creatorcontrib><creatorcontrib>Gu, Geun Ho</creatorcontrib><creatorcontrib>Mullen, Charles A</creatorcontrib><creatorcontrib>Boateng, Akwasi A</creatorcontrib><creatorcontrib>Vlachos, Dionisios G</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyungtae</au><au>Gu, Geun Ho</au><au>Mullen, Charles A</au><au>Boateng, Akwasi A</au><au>Vlachos, Dionisios G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2015-01</date><risdate>2015</risdate><volume>8</volume><issue>2</issue><spage>315</spage><epage>322</epage><pages>315-322</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted–Evans–Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x&lt;3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25470789</pmid><doi>10.1002/cssc.201402940</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2015-01, Vol.8 (2), p.315-322
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1663626090
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adsorption
biomass
carbon
catechol
Catechols - chemistry
DFT
energy
guaiacol
Guaiacol - chemistry
hydrodeoxygenation
Hydrogenation
Models, Molecular
Molecular Conformation
phenol
platinum
Platinum - chemistry
Quantum Theory
Thermodynamics
title Guaiacol Hydrodeoxygenation Mechanism on Pt(111): Insights from Density Functional Theory and Linear Free Energy Relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guaiacol%20Hydrodeoxygenation%20Mechanism%20on%20Pt(111):%20Insights%20from%20Density%20Functional%20Theory%20and%20Linear%20Free%20Energy%20Relations&rft.jtitle=ChemSusChem&rft.au=Lee,%20Kyungtae&rft.date=2015-01&rft.volume=8&rft.issue=2&rft.spage=315&rft.epage=322&rft.pages=315-322&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201402940&rft_dat=%3Cproquest_cross%3E1652436840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753632292&rft_id=info:pmid/25470789&rfr_iscdi=true