assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements

Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2012-02, Vol.48 (2), p.1-n/a
Hauptverfasser: Holmes, Thomas R. H, Jackson, Thomas J, Reichle, Rolf H, Basara, Jeffrey B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page 1
container_title Water resources research
container_volume 48
creator Holmes, Thomas R. H
Jackson, Thomas J
Reichle, Rolf H
Basara, Jeffrey B
description Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil temperature. In this study in situ data collected over the state of Oklahoma are used to assess surface (soil) temperature from three NWP systems: (1) the integrated forecast system from the European Center for Medium range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and (3) the global data assimilation system used by the National Center for Environmental Prediction (NCEP). The results are presented by hour of day with specific attention directed to the SMAP early morning overpass time at around 6 A.M. local time, and the period of 1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling and measurement depth are accounted for by synchronizing each NWP set to match the mean phase of the in situ data and adjusting the amplitude in accordance with heat flow principles. These results indicate that with little calibration all products meet the SMAP error budget criteria over Oklahoma.
doi_str_mv 10.1029/2011WR010538
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1663617886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1663617886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4634-d387fa810a0a3fc1464d5aaeba02798bf5f242936cfca55bbd6e2927aec2fac23</originalsourceid><addsrcrecordid>eNp90U1v1DAQBuAIgcSycOOOJS4cSPFHYsdHdkULUvnQQrVHa5KMl5Qk3noStf33eJUKIQ6cfPAzMx6_WfZS8DPBpX0nuRD7HRe8VNWjbCVsUeTGGvU4W3FeqFwoa55mz4iuORdFqc0quwMiJBpwnFjwjObooUFGoevZhMMRI0xzRHaMoZ2biZiPYWDjPGDsGujZLcL0E2O6x7Zrpi6MbAgt9sRm6sYDO8Qwj21eA2HLBoQ0AE_D6Hn2xENP-OLhXGdX5x9-bD_ml18vPm3fX-ZQaFXkraqMh0pw4KB8IwpdtCUA1sClsVXtSy8LaZVufANlWdetRmmlAWxk2kSqdfZm6Zs2uJmRJjd01GDfw4hhJie0VlqYqtKJvv6HXoc5jul1Ln0vV9JawZN6u6gmBqKI3h1jN0C8T-jkrPs7hsTVwm-7Hu__a91-t90JJVJU6yxfqjqa8O5PFcRfThtlSrf_cuHON5-_bfZ85zbJv1q8h-DgEDtyV99T75KfkrayVL8BQsOkog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020329910</pqid></control><display><type>article</type><title>assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Holmes, Thomas R. H ; Jackson, Thomas J ; Reichle, Rolf H ; Basara, Jeffrey B</creator><creatorcontrib>Holmes, Thomas R. H ; Jackson, Thomas J ; Reichle, Rolf H ; Basara, Jeffrey B</creatorcontrib><description>Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil temperature. In this study in situ data collected over the state of Oklahoma are used to assess surface (soil) temperature from three NWP systems: (1) the integrated forecast system from the European Center for Medium range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and (3) the global data assimilation system used by the National Center for Environmental Prediction (NCEP). The results are presented by hour of day with specific attention directed to the SMAP early morning overpass time at around 6 A.M. local time, and the period of 1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling and measurement depth are accounted for by synchronizing each NWP set to match the mean phase of the in situ data and adjusting the amplitude in accordance with heat flow principles. These results indicate that with little calibration all products meet the SMAP error budget criteria over Oklahoma.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2011WR010538</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Atmospheric boundary layer ; Data collection ; Datasets ; Dielectric properties ; environmental models ; field experimentation ; heat ; Heat flow ; heatflow ; Hydrology ; mathematical models ; microwave radiometers ; model validation ; Moisture content ; Oklahoma ; prediction ; Prediction models ; Radiation ; Remote sensing ; Satellites ; Sensors ; soil depth ; Soil moisture ; soil surface layers ; Soil surfaces ; Soil temperature ; soil water ; soil-atmosphere interactions ; Soils ; spatial data ; Surface temperature ; Temperature ; time series analysis ; weather ; Weather forecasting</subject><ispartof>Water resources research, 2012-02, Vol.48 (2), p.1-n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4634-d387fa810a0a3fc1464d5aaeba02798bf5f242936cfca55bbd6e2927aec2fac23</citedby><cites>FETCH-LOGICAL-a4634-d387fa810a0a3fc1464d5aaeba02798bf5f242936cfca55bbd6e2927aec2fac23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011WR010538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011WR010538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Holmes, Thomas R. H</creatorcontrib><creatorcontrib>Jackson, Thomas J</creatorcontrib><creatorcontrib>Reichle, Rolf H</creatorcontrib><creatorcontrib>Basara, Jeffrey B</creatorcontrib><title>assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil temperature. In this study in situ data collected over the state of Oklahoma are used to assess surface (soil) temperature from three NWP systems: (1) the integrated forecast system from the European Center for Medium range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and (3) the global data assimilation system used by the National Center for Environmental Prediction (NCEP). The results are presented by hour of day with specific attention directed to the SMAP early morning overpass time at around 6 A.M. local time, and the period of 1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling and measurement depth are accounted for by synchronizing each NWP set to match the mean phase of the in situ data and adjusting the amplitude in accordance with heat flow principles. These results indicate that with little calibration all products meet the SMAP error budget criteria over Oklahoma.</description><subject>Accuracy</subject><subject>Atmospheric boundary layer</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Dielectric properties</subject><subject>environmental models</subject><subject>field experimentation</subject><subject>heat</subject><subject>Heat flow</subject><subject>heatflow</subject><subject>Hydrology</subject><subject>mathematical models</subject><subject>microwave radiometers</subject><subject>model validation</subject><subject>Moisture content</subject><subject>Oklahoma</subject><subject>prediction</subject><subject>Prediction models</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sensors</subject><subject>soil depth</subject><subject>Soil moisture</subject><subject>soil surface layers</subject><subject>Soil surfaces</subject><subject>Soil temperature</subject><subject>soil water</subject><subject>soil-atmosphere interactions</subject><subject>Soils</subject><subject>spatial data</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>time series analysis</subject><subject>weather</subject><subject>Weather forecasting</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90U1v1DAQBuAIgcSycOOOJS4cSPFHYsdHdkULUvnQQrVHa5KMl5Qk3noStf33eJUKIQ6cfPAzMx6_WfZS8DPBpX0nuRD7HRe8VNWjbCVsUeTGGvU4W3FeqFwoa55mz4iuORdFqc0quwMiJBpwnFjwjObooUFGoevZhMMRI0xzRHaMoZ2biZiPYWDjPGDsGujZLcL0E2O6x7Zrpi6MbAgt9sRm6sYDO8Qwj21eA2HLBoQ0AE_D6Hn2xENP-OLhXGdX5x9-bD_ml18vPm3fX-ZQaFXkraqMh0pw4KB8IwpdtCUA1sClsVXtSy8LaZVufANlWdetRmmlAWxk2kSqdfZm6Zs2uJmRJjd01GDfw4hhJie0VlqYqtKJvv6HXoc5jul1Ln0vV9JawZN6u6gmBqKI3h1jN0C8T-jkrPs7hsTVwm-7Hu__a91-t90JJVJU6yxfqjqa8O5PFcRfThtlSrf_cuHON5-_bfZ85zbJv1q8h-DgEDtyV99T75KfkrayVL8BQsOkog</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Holmes, Thomas R. H</creator><creator>Jackson, Thomas J</creator><creator>Reichle, Rolf H</creator><creator>Basara, Jeffrey B</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7N</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>201202</creationdate><title>assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements</title><author>Holmes, Thomas R. H ; Jackson, Thomas J ; Reichle, Rolf H ; Basara, Jeffrey B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4634-d387fa810a0a3fc1464d5aaeba02798bf5f242936cfca55bbd6e2927aec2fac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Atmospheric boundary layer</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Dielectric properties</topic><topic>environmental models</topic><topic>field experimentation</topic><topic>heat</topic><topic>Heat flow</topic><topic>heatflow</topic><topic>Hydrology</topic><topic>mathematical models</topic><topic>microwave radiometers</topic><topic>model validation</topic><topic>Moisture content</topic><topic>Oklahoma</topic><topic>prediction</topic><topic>Prediction models</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sensors</topic><topic>soil depth</topic><topic>Soil moisture</topic><topic>soil surface layers</topic><topic>Soil surfaces</topic><topic>Soil temperature</topic><topic>soil water</topic><topic>soil-atmosphere interactions</topic><topic>Soils</topic><topic>spatial data</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>time series analysis</topic><topic>weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, Thomas R. H</creatorcontrib><creatorcontrib>Jackson, Thomas J</creatorcontrib><creatorcontrib>Reichle, Rolf H</creatorcontrib><creatorcontrib>Basara, Jeffrey B</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, Thomas R. H</au><au>Jackson, Thomas J</au><au>Reichle, Rolf H</au><au>Basara, Jeffrey B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2012-02</date><risdate>2012</risdate><volume>48</volume><issue>2</issue><spage>1</spage><epage>n/a</epage><pages>1-n/a</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil temperature. In this study in situ data collected over the state of Oklahoma are used to assess surface (soil) temperature from three NWP systems: (1) the integrated forecast system from the European Center for Medium range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and (3) the global data assimilation system used by the National Center for Environmental Prediction (NCEP). The results are presented by hour of day with specific attention directed to the SMAP early morning overpass time at around 6 A.M. local time, and the period of 1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling and measurement depth are accounted for by synchronizing each NWP set to match the mean phase of the in situ data and adjusting the amplitude in accordance with heat flow principles. These results indicate that with little calibration all products meet the SMAP error budget criteria over Oklahoma.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011WR010538</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2012-02, Vol.48 (2), p.1-n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_1663617886
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Atmospheric boundary layer
Data collection
Datasets
Dielectric properties
environmental models
field experimentation
heat
Heat flow
heatflow
Hydrology
mathematical models
microwave radiometers
model validation
Moisture content
Oklahoma
prediction
Prediction models
Radiation
Remote sensing
Satellites
Sensors
soil depth
Soil moisture
soil surface layers
Soil surfaces
Soil temperature
soil water
soil-atmosphere interactions
Soils
spatial data
Surface temperature
Temperature
time series analysis
weather
Weather forecasting
title assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=assessment%20of%20surface%20soil%20temperature%20products%20from%20numerical%20weather%20prediction%20models%20using%20ground-based%20measurements&rft.jtitle=Water%20resources%20research&rft.au=Holmes,%20Thomas%20R.%20H&rft.date=2012-02&rft.volume=48&rft.issue=2&rft.spage=1&rft.epage=n/a&rft.pages=1-n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2011WR010538&rft_dat=%3Cproquest_cross%3E1663617886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020329910&rft_id=info:pmid/&rfr_iscdi=true