assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements
Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil te...
Gespeichert in:
Veröffentlicht in: | Water resources research 2012-02, Vol.48 (2), p.1-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Water resources research |
container_volume | 48 |
creator | Holmes, Thomas R. H Jackson, Thomas J Reichle, Rolf H Basara, Jeffrey B |
description | Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil temperature. In this study in situ data collected over the state of Oklahoma are used to assess surface (soil) temperature from three NWP systems: (1) the integrated forecast system from the European Center for Medium range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and (3) the global data assimilation system used by the National Center for Environmental Prediction (NCEP). The results are presented by hour of day with specific attention directed to the SMAP early morning overpass time at around 6 A.M. local time, and the period of 1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling and measurement depth are accounted for by synchronizing each NWP set to match the mean phase of the in situ data and adjusting the amplitude in accordance with heat flow principles. These results indicate that with little calibration all products meet the SMAP error budget criteria over Oklahoma. |
doi_str_mv | 10.1029/2011WR010538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1663617886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1663617886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4634-d387fa810a0a3fc1464d5aaeba02798bf5f242936cfca55bbd6e2927aec2fac23</originalsourceid><addsrcrecordid>eNp90U1v1DAQBuAIgcSycOOOJS4cSPFHYsdHdkULUvnQQrVHa5KMl5Qk3noStf33eJUKIQ6cfPAzMx6_WfZS8DPBpX0nuRD7HRe8VNWjbCVsUeTGGvU4W3FeqFwoa55mz4iuORdFqc0quwMiJBpwnFjwjObooUFGoevZhMMRI0xzRHaMoZ2biZiPYWDjPGDsGujZLcL0E2O6x7Zrpi6MbAgt9sRm6sYDO8Qwj21eA2HLBoQ0AE_D6Hn2xENP-OLhXGdX5x9-bD_ml18vPm3fX-ZQaFXkraqMh0pw4KB8IwpdtCUA1sClsVXtSy8LaZVufANlWdetRmmlAWxk2kSqdfZm6Zs2uJmRJjd01GDfw4hhJie0VlqYqtKJvv6HXoc5jul1Ln0vV9JawZN6u6gmBqKI3h1jN0C8T-jkrPs7hsTVwm-7Hu__a91-t90JJVJU6yxfqjqa8O5PFcRfThtlSrf_cuHON5-_bfZ85zbJv1q8h-DgEDtyV99T75KfkrayVL8BQsOkog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020329910</pqid></control><display><type>article</type><title>assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Holmes, Thomas R. H ; Jackson, Thomas J ; Reichle, Rolf H ; Basara, Jeffrey B</creator><creatorcontrib>Holmes, Thomas R. H ; Jackson, Thomas J ; Reichle, Rolf H ; Basara, Jeffrey B</creatorcontrib><description>Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil temperature. In this study in situ data collected over the state of Oklahoma are used to assess surface (soil) temperature from three NWP systems: (1) the integrated forecast system from the European Center for Medium range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and (3) the global data assimilation system used by the National Center for Environmental Prediction (NCEP). The results are presented by hour of day with specific attention directed to the SMAP early morning overpass time at around 6 A.M. local time, and the period of 1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling and measurement depth are accounted for by synchronizing each NWP set to match the mean phase of the in situ data and adjusting the amplitude in accordance with heat flow principles. These results indicate that with little calibration all products meet the SMAP error budget criteria over Oklahoma.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2011WR010538</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Atmospheric boundary layer ; Data collection ; Datasets ; Dielectric properties ; environmental models ; field experimentation ; heat ; Heat flow ; heatflow ; Hydrology ; mathematical models ; microwave radiometers ; model validation ; Moisture content ; Oklahoma ; prediction ; Prediction models ; Radiation ; Remote sensing ; Satellites ; Sensors ; soil depth ; Soil moisture ; soil surface layers ; Soil surfaces ; Soil temperature ; soil water ; soil-atmosphere interactions ; Soils ; spatial data ; Surface temperature ; Temperature ; time series analysis ; weather ; Weather forecasting</subject><ispartof>Water resources research, 2012-02, Vol.48 (2), p.1-n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4634-d387fa810a0a3fc1464d5aaeba02798bf5f242936cfca55bbd6e2927aec2fac23</citedby><cites>FETCH-LOGICAL-a4634-d387fa810a0a3fc1464d5aaeba02798bf5f242936cfca55bbd6e2927aec2fac23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011WR010538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011WR010538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Holmes, Thomas R. H</creatorcontrib><creatorcontrib>Jackson, Thomas J</creatorcontrib><creatorcontrib>Reichle, Rolf H</creatorcontrib><creatorcontrib>Basara, Jeffrey B</creatorcontrib><title>assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil temperature. In this study in situ data collected over the state of Oklahoma are used to assess surface (soil) temperature from three NWP systems: (1) the integrated forecast system from the European Center for Medium range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and (3) the global data assimilation system used by the National Center for Environmental Prediction (NCEP). The results are presented by hour of day with specific attention directed to the SMAP early morning overpass time at around 6 A.M. local time, and the period of 1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling and measurement depth are accounted for by synchronizing each NWP set to match the mean phase of the in situ data and adjusting the amplitude in accordance with heat flow principles. These results indicate that with little calibration all products meet the SMAP error budget criteria over Oklahoma.</description><subject>Accuracy</subject><subject>Atmospheric boundary layer</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Dielectric properties</subject><subject>environmental models</subject><subject>field experimentation</subject><subject>heat</subject><subject>Heat flow</subject><subject>heatflow</subject><subject>Hydrology</subject><subject>mathematical models</subject><subject>microwave radiometers</subject><subject>model validation</subject><subject>Moisture content</subject><subject>Oklahoma</subject><subject>prediction</subject><subject>Prediction models</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sensors</subject><subject>soil depth</subject><subject>Soil moisture</subject><subject>soil surface layers</subject><subject>Soil surfaces</subject><subject>Soil temperature</subject><subject>soil water</subject><subject>soil-atmosphere interactions</subject><subject>Soils</subject><subject>spatial data</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>time series analysis</subject><subject>weather</subject><subject>Weather forecasting</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90U1v1DAQBuAIgcSycOOOJS4cSPFHYsdHdkULUvnQQrVHa5KMl5Qk3noStf33eJUKIQ6cfPAzMx6_WfZS8DPBpX0nuRD7HRe8VNWjbCVsUeTGGvU4W3FeqFwoa55mz4iuORdFqc0quwMiJBpwnFjwjObooUFGoevZhMMRI0xzRHaMoZ2biZiPYWDjPGDsGujZLcL0E2O6x7Zrpi6MbAgt9sRm6sYDO8Qwj21eA2HLBoQ0AE_D6Hn2xENP-OLhXGdX5x9-bD_ml18vPm3fX-ZQaFXkraqMh0pw4KB8IwpdtCUA1sClsVXtSy8LaZVufANlWdetRmmlAWxk2kSqdfZm6Zs2uJmRJjd01GDfw4hhJie0VlqYqtKJvv6HXoc5jul1Ln0vV9JawZN6u6gmBqKI3h1jN0C8T-jkrPs7hsTVwm-7Hu__a91-t90JJVJU6yxfqjqa8O5PFcRfThtlSrf_cuHON5-_bfZ85zbJv1q8h-DgEDtyV99T75KfkrayVL8BQsOkog</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Holmes, Thomas R. H</creator><creator>Jackson, Thomas J</creator><creator>Reichle, Rolf H</creator><creator>Basara, Jeffrey B</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7N</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>201202</creationdate><title>assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements</title><author>Holmes, Thomas R. H ; Jackson, Thomas J ; Reichle, Rolf H ; Basara, Jeffrey B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4634-d387fa810a0a3fc1464d5aaeba02798bf5f242936cfca55bbd6e2927aec2fac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Atmospheric boundary layer</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Dielectric properties</topic><topic>environmental models</topic><topic>field experimentation</topic><topic>heat</topic><topic>Heat flow</topic><topic>heatflow</topic><topic>Hydrology</topic><topic>mathematical models</topic><topic>microwave radiometers</topic><topic>model validation</topic><topic>Moisture content</topic><topic>Oklahoma</topic><topic>prediction</topic><topic>Prediction models</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sensors</topic><topic>soil depth</topic><topic>Soil moisture</topic><topic>soil surface layers</topic><topic>Soil surfaces</topic><topic>Soil temperature</topic><topic>soil water</topic><topic>soil-atmosphere interactions</topic><topic>Soils</topic><topic>spatial data</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>time series analysis</topic><topic>weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, Thomas R. H</creatorcontrib><creatorcontrib>Jackson, Thomas J</creatorcontrib><creatorcontrib>Reichle, Rolf H</creatorcontrib><creatorcontrib>Basara, Jeffrey B</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, Thomas R. H</au><au>Jackson, Thomas J</au><au>Reichle, Rolf H</au><au>Basara, Jeffrey B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2012-02</date><risdate>2012</risdate><volume>48</volume><issue>2</issue><spage>1</spage><epage>n/a</epage><pages>1-n/a</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Surface soil temperature estimates at approximately 0.05 m depth are needed to retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band (1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various weather centers produce global estimates of soil temperature. In this study in situ data collected over the state of Oklahoma are used to assess surface (soil) temperature from three NWP systems: (1) the integrated forecast system from the European Center for Medium range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and (3) the global data assimilation system used by the National Center for Environmental Prediction (NCEP). The results are presented by hour of day with specific attention directed to the SMAP early morning overpass time at around 6 A.M. local time, and the period of 1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling and measurement depth are accounted for by synchronizing each NWP set to match the mean phase of the in situ data and adjusting the amplitude in accordance with heat flow principles. These results indicate that with little calibration all products meet the SMAP error budget criteria over Oklahoma.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011WR010538</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2012-02, Vol.48 (2), p.1-n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_miscellaneous_1663617886 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Atmospheric boundary layer Data collection Datasets Dielectric properties environmental models field experimentation heat Heat flow heatflow Hydrology mathematical models microwave radiometers model validation Moisture content Oklahoma prediction Prediction models Radiation Remote sensing Satellites Sensors soil depth Soil moisture soil surface layers Soil surfaces Soil temperature soil water soil-atmosphere interactions Soils spatial data Surface temperature Temperature time series analysis weather Weather forecasting |
title | assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=assessment%20of%20surface%20soil%20temperature%20products%20from%20numerical%20weather%20prediction%20models%20using%20ground-based%20measurements&rft.jtitle=Water%20resources%20research&rft.au=Holmes,%20Thomas%20R.%20H&rft.date=2012-02&rft.volume=48&rft.issue=2&rft.spage=1&rft.epage=n/a&rft.pages=1-n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2011WR010538&rft_dat=%3Cproquest_cross%3E1663617886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020329910&rft_id=info:pmid/&rfr_iscdi=true |