Long-term in vivo glucose monitoring using fluorescent hydrogel fibers
The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (33), p.13399-13403 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13403 |
---|---|
container_issue | 33 |
container_start_page | 13399 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Heo, Yun Jung Shibata, Hideaki Okitsu, Teru Kawanishi, Tetsuro Takeuchi, Shoji |
description | The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence-based sensors cannot remain at an implantation site and respond to blood glucose concentrations over an extended period. Here, we present a long-term in vivo glucose monitoring method using glucose-responsive fluorescent hydrogel fibers. We fabricated glucose-responsive fluorescent hydrogels in a fibrous structure because this structure enables the sensors to remain at the implantation site for a long period. Moreover, these fibers allow easy control of the amount of fluorescent sensors implanted, simply by cutting the fibers to the desired length, and facilitate sensor removal from the implantation site after use. We found that the polyethylene glycol (PEG)-bonded polyacrylamide (PAM) hydrogel fibers reduced inflammation compared with PAM hydrogel fibers, transdermally glowed, and continuously responded to blood glucose concentration changes for up to 140 days, showing their potential application for long-term in vivo continuous glucose monitoring. |
doi_str_mv | 10.1073/pnas.1104954108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1663529570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979210</jstor_id><sourcerecordid>27979210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-b5dd2056f0a65076b1118b9b616341ec53539bdd6b09b8a02395b5ea416d46c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhzAmIuMAl7Yy_Yl8qoYoC0kocKGfLTpzUq2y82MlK_fck7NIFDlzswzzzaGZeQl4iXCBU7HI32HyBCFwLjqAekRWCxlJyDY_JCoBWpeKUn5FnOW8AQAsFT8kZRQVqblqRm3UcunL0aVuEodiHfSy6fqpj9sU2DmGMKQxdMeXlbfspJp9rP4zF3X2TYuf7og3Op_ycPGltn_2L439Obm8-3l5_LtdfP325_rAua6H0WDrRNBSEbMFKAZV0iKicdhIl4-hrwQTTrmmkA-2UBcq0cMJbjrLhsmbn5Oqg3U1u65tlkmR7s0tha9O9iTaYvytDuDNd3BuGQiEXs-DdUZDij8nn0WzDvFDf28HHKRs1X6sCpAv5_r8kSskE1aKCGX37D7qJUxrmO_zyaS3l4rs8QHWKOSffPkyNYJYszZKlOWU5d7z-c9kH_nd4M1AcgaXzpFOGMYOM6QV5dUA2eY7ypKh0pSkuo7851Fsbje1SyOb7NwrIAVADqyj7CchWt5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884299665</pqid></control><display><type>article</type><title>Long-term in vivo glucose monitoring using fluorescent hydrogel fibers</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Heo, Yun Jung ; Shibata, Hideaki ; Okitsu, Teru ; Kawanishi, Tetsuro ; Takeuchi, Shoji</creator><creatorcontrib>Heo, Yun Jung ; Shibata, Hideaki ; Okitsu, Teru ; Kawanishi, Tetsuro ; Takeuchi, Shoji</creatorcontrib><description>The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence-based sensors cannot remain at an implantation site and respond to blood glucose concentrations over an extended period. Here, we present a long-term in vivo glucose monitoring method using glucose-responsive fluorescent hydrogel fibers. We fabricated glucose-responsive fluorescent hydrogels in a fibrous structure because this structure enables the sensors to remain at the implantation site for a long period. Moreover, these fibers allow easy control of the amount of fluorescent sensors implanted, simply by cutting the fibers to the desired length, and facilitate sensor removal from the implantation site after use. We found that the polyethylene glycol (PEG)-bonded polyacrylamide (PAM) hydrogel fibers reduced inflammation compared with PAM hydrogel fibers, transdermally glowed, and continuously responded to blood glucose concentration changes for up to 140 days, showing their potential application for long-term in vivo continuous glucose monitoring.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1104954108</identifier><identifier>PMID: 21808049</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acrylic Resins ; Animals ; Biocompatibility ; Blood ; Blood glucose ; Blood Glucose - analysis ; Fluorescence ; Gastroscopy ; Glucose ; Glycols ; hydrocolloids ; Hydrogels ; Hydrogels - chemistry ; Inflammation ; Inflammation - prevention & control ; Male ; Mice ; monitoring ; Monitoring, Physiologic - methods ; Monomers ; Physical Sciences ; polyacrylamide ; polyethylene glycol ; Polyethylene Glycols ; Prostheses and Implants ; Sensors ; Swelling ; Transplants & implants</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13399-13403</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 16, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-b5dd2056f0a65076b1118b9b616341ec53539bdd6b09b8a02395b5ea416d46c3</citedby><cites>FETCH-LOGICAL-c589t-b5dd2056f0a65076b1118b9b616341ec53539bdd6b09b8a02395b5ea416d46c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979210$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979210$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21808049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, Yun Jung</creatorcontrib><creatorcontrib>Shibata, Hideaki</creatorcontrib><creatorcontrib>Okitsu, Teru</creatorcontrib><creatorcontrib>Kawanishi, Tetsuro</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><title>Long-term in vivo glucose monitoring using fluorescent hydrogel fibers</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence-based sensors cannot remain at an implantation site and respond to blood glucose concentrations over an extended period. Here, we present a long-term in vivo glucose monitoring method using glucose-responsive fluorescent hydrogel fibers. We fabricated glucose-responsive fluorescent hydrogels in a fibrous structure because this structure enables the sensors to remain at the implantation site for a long period. Moreover, these fibers allow easy control of the amount of fluorescent sensors implanted, simply by cutting the fibers to the desired length, and facilitate sensor removal from the implantation site after use. We found that the polyethylene glycol (PEG)-bonded polyacrylamide (PAM) hydrogel fibers reduced inflammation compared with PAM hydrogel fibers, transdermally glowed, and continuously responded to blood glucose concentration changes for up to 140 days, showing their potential application for long-term in vivo continuous glucose monitoring.</description><subject>Acrylic Resins</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Blood</subject><subject>Blood glucose</subject><subject>Blood Glucose - analysis</subject><subject>Fluorescence</subject><subject>Gastroscopy</subject><subject>Glucose</subject><subject>Glycols</subject><subject>hydrocolloids</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Inflammation</subject><subject>Inflammation - prevention & control</subject><subject>Male</subject><subject>Mice</subject><subject>monitoring</subject><subject>Monitoring, Physiologic - methods</subject><subject>Monomers</subject><subject>Physical Sciences</subject><subject>polyacrylamide</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols</subject><subject>Prostheses and Implants</subject><subject>Sensors</subject><subject>Swelling</subject><subject>Transplants & implants</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvhzAmIuMAl7Yy_Yl8qoYoC0kocKGfLTpzUq2y82MlK_fck7NIFDlzswzzzaGZeQl4iXCBU7HI32HyBCFwLjqAekRWCxlJyDY_JCoBWpeKUn5FnOW8AQAsFT8kZRQVqblqRm3UcunL0aVuEodiHfSy6fqpj9sU2DmGMKQxdMeXlbfspJp9rP4zF3X2TYuf7og3Op_ycPGltn_2L439Obm8-3l5_LtdfP325_rAua6H0WDrRNBSEbMFKAZV0iKicdhIl4-hrwQTTrmmkA-2UBcq0cMJbjrLhsmbn5Oqg3U1u65tlkmR7s0tha9O9iTaYvytDuDNd3BuGQiEXs-DdUZDij8nn0WzDvFDf28HHKRs1X6sCpAv5_r8kSskE1aKCGX37D7qJUxrmO_zyaS3l4rs8QHWKOSffPkyNYJYszZKlOWU5d7z-c9kH_nd4M1AcgaXzpFOGMYOM6QV5dUA2eY7ypKh0pSkuo7851Fsbje1SyOb7NwrIAVADqyj7CchWt5w</recordid><startdate>20110816</startdate><enddate>20110816</enddate><creator>Heo, Yun Jung</creator><creator>Shibata, Hideaki</creator><creator>Okitsu, Teru</creator><creator>Kawanishi, Tetsuro</creator><creator>Takeuchi, Shoji</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110816</creationdate><title>Long-term in vivo glucose monitoring using fluorescent hydrogel fibers</title><author>Heo, Yun Jung ; Shibata, Hideaki ; Okitsu, Teru ; Kawanishi, Tetsuro ; Takeuchi, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-b5dd2056f0a65076b1118b9b616341ec53539bdd6b09b8a02395b5ea416d46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrylic Resins</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Blood</topic><topic>Blood glucose</topic><topic>Blood Glucose - analysis</topic><topic>Fluorescence</topic><topic>Gastroscopy</topic><topic>Glucose</topic><topic>Glycols</topic><topic>hydrocolloids</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Inflammation</topic><topic>Inflammation - prevention & control</topic><topic>Male</topic><topic>Mice</topic><topic>monitoring</topic><topic>Monitoring, Physiologic - methods</topic><topic>Monomers</topic><topic>Physical Sciences</topic><topic>polyacrylamide</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols</topic><topic>Prostheses and Implants</topic><topic>Sensors</topic><topic>Swelling</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Yun Jung</creatorcontrib><creatorcontrib>Shibata, Hideaki</creatorcontrib><creatorcontrib>Okitsu, Teru</creatorcontrib><creatorcontrib>Kawanishi, Tetsuro</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Yun Jung</au><au>Shibata, Hideaki</au><au>Okitsu, Teru</au><au>Kawanishi, Tetsuro</au><au>Takeuchi, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term in vivo glucose monitoring using fluorescent hydrogel fibers</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-08-16</date><risdate>2011</risdate><volume>108</volume><issue>33</issue><spage>13399</spage><epage>13403</epage><pages>13399-13403</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence-based sensors cannot remain at an implantation site and respond to blood glucose concentrations over an extended period. Here, we present a long-term in vivo glucose monitoring method using glucose-responsive fluorescent hydrogel fibers. We fabricated glucose-responsive fluorescent hydrogels in a fibrous structure because this structure enables the sensors to remain at the implantation site for a long period. Moreover, these fibers allow easy control of the amount of fluorescent sensors implanted, simply by cutting the fibers to the desired length, and facilitate sensor removal from the implantation site after use. We found that the polyethylene glycol (PEG)-bonded polyacrylamide (PAM) hydrogel fibers reduced inflammation compared with PAM hydrogel fibers, transdermally glowed, and continuously responded to blood glucose concentration changes for up to 140 days, showing their potential application for long-term in vivo continuous glucose monitoring.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21808049</pmid><doi>10.1073/pnas.1104954108</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13399-13403 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1663529570 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acrylic Resins Animals Biocompatibility Blood Blood glucose Blood Glucose - analysis Fluorescence Gastroscopy Glucose Glycols hydrocolloids Hydrogels Hydrogels - chemistry Inflammation Inflammation - prevention & control Male Mice monitoring Monitoring, Physiologic - methods Monomers Physical Sciences polyacrylamide polyethylene glycol Polyethylene Glycols Prostheses and Implants Sensors Swelling Transplants & implants |
title | Long-term in vivo glucose monitoring using fluorescent hydrogel fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20in%20vivo%20glucose%20monitoring%20using%20fluorescent%20hydrogel%20fibers&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Heo,%20Yun%20Jung&rft.date=2011-08-16&rft.volume=108&rft.issue=33&rft.spage=13399&rft.epage=13403&rft.pages=13399-13403&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1104954108&rft_dat=%3Cjstor_proqu%3E27979210%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884299665&rft_id=info:pmid/21808049&rft_jstor_id=27979210&rfr_iscdi=true |