Long-term in vivo glucose monitoring using fluorescent hydrogel fibers

The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (33), p.13399-13403
Hauptverfasser: Heo, Yun Jung, Shibata, Hideaki, Okitsu, Teru, Kawanishi, Tetsuro, Takeuchi, Shoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13403
container_issue 33
container_start_page 13399
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Heo, Yun Jung
Shibata, Hideaki
Okitsu, Teru
Kawanishi, Tetsuro
Takeuchi, Shoji
description The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence-based sensors cannot remain at an implantation site and respond to blood glucose concentrations over an extended period. Here, we present a long-term in vivo glucose monitoring method using glucose-responsive fluorescent hydrogel fibers. We fabricated glucose-responsive fluorescent hydrogels in a fibrous structure because this structure enables the sensors to remain at the implantation site for a long period. Moreover, these fibers allow easy control of the amount of fluorescent sensors implanted, simply by cutting the fibers to the desired length, and facilitate sensor removal from the implantation site after use. We found that the polyethylene glycol (PEG)-bonded polyacrylamide (PAM) hydrogel fibers reduced inflammation compared with PAM hydrogel fibers, transdermally glowed, and continuously responded to blood glucose concentration changes for up to 140 days, showing their potential application for long-term in vivo continuous glucose monitoring.
doi_str_mv 10.1073/pnas.1104954108
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1663529570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979210</jstor_id><sourcerecordid>27979210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-b5dd2056f0a65076b1118b9b616341ec53539bdd6b09b8a02395b5ea416d46c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhzAmIuMAl7Yy_Yl8qoYoC0kocKGfLTpzUq2y82MlK_fck7NIFDlzswzzzaGZeQl4iXCBU7HI32HyBCFwLjqAekRWCxlJyDY_JCoBWpeKUn5FnOW8AQAsFT8kZRQVqblqRm3UcunL0aVuEodiHfSy6fqpj9sU2DmGMKQxdMeXlbfspJp9rP4zF3X2TYuf7og3Op_ycPGltn_2L439Obm8-3l5_LtdfP325_rAua6H0WDrRNBSEbMFKAZV0iKicdhIl4-hrwQTTrmmkA-2UBcq0cMJbjrLhsmbn5Oqg3U1u65tlkmR7s0tha9O9iTaYvytDuDNd3BuGQiEXs-DdUZDij8nn0WzDvFDf28HHKRs1X6sCpAv5_r8kSskE1aKCGX37D7qJUxrmO_zyaS3l4rs8QHWKOSffPkyNYJYszZKlOWU5d7z-c9kH_nd4M1AcgaXzpFOGMYOM6QV5dUA2eY7ypKh0pSkuo7851Fsbje1SyOb7NwrIAVADqyj7CchWt5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884299665</pqid></control><display><type>article</type><title>Long-term in vivo glucose monitoring using fluorescent hydrogel fibers</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Heo, Yun Jung ; Shibata, Hideaki ; Okitsu, Teru ; Kawanishi, Tetsuro ; Takeuchi, Shoji</creator><creatorcontrib>Heo, Yun Jung ; Shibata, Hideaki ; Okitsu, Teru ; Kawanishi, Tetsuro ; Takeuchi, Shoji</creatorcontrib><description>The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence-based sensors cannot remain at an implantation site and respond to blood glucose concentrations over an extended period. Here, we present a long-term in vivo glucose monitoring method using glucose-responsive fluorescent hydrogel fibers. We fabricated glucose-responsive fluorescent hydrogels in a fibrous structure because this structure enables the sensors to remain at the implantation site for a long period. Moreover, these fibers allow easy control of the amount of fluorescent sensors implanted, simply by cutting the fibers to the desired length, and facilitate sensor removal from the implantation site after use. We found that the polyethylene glycol (PEG)-bonded polyacrylamide (PAM) hydrogel fibers reduced inflammation compared with PAM hydrogel fibers, transdermally glowed, and continuously responded to blood glucose concentration changes for up to 140 days, showing their potential application for long-term in vivo continuous glucose monitoring.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1104954108</identifier><identifier>PMID: 21808049</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acrylic Resins ; Animals ; Biocompatibility ; Blood ; Blood glucose ; Blood Glucose - analysis ; Fluorescence ; Gastroscopy ; Glucose ; Glycols ; hydrocolloids ; Hydrogels ; Hydrogels - chemistry ; Inflammation ; Inflammation - prevention &amp; control ; Male ; Mice ; monitoring ; Monitoring, Physiologic - methods ; Monomers ; Physical Sciences ; polyacrylamide ; polyethylene glycol ; Polyethylene Glycols ; Prostheses and Implants ; Sensors ; Swelling ; Transplants &amp; implants</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13399-13403</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 16, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-b5dd2056f0a65076b1118b9b616341ec53539bdd6b09b8a02395b5ea416d46c3</citedby><cites>FETCH-LOGICAL-c589t-b5dd2056f0a65076b1118b9b616341ec53539bdd6b09b8a02395b5ea416d46c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979210$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979210$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21808049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, Yun Jung</creatorcontrib><creatorcontrib>Shibata, Hideaki</creatorcontrib><creatorcontrib>Okitsu, Teru</creatorcontrib><creatorcontrib>Kawanishi, Tetsuro</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><title>Long-term in vivo glucose monitoring using fluorescent hydrogel fibers</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence-based sensors cannot remain at an implantation site and respond to blood glucose concentrations over an extended period. Here, we present a long-term in vivo glucose monitoring method using glucose-responsive fluorescent hydrogel fibers. We fabricated glucose-responsive fluorescent hydrogels in a fibrous structure because this structure enables the sensors to remain at the implantation site for a long period. Moreover, these fibers allow easy control of the amount of fluorescent sensors implanted, simply by cutting the fibers to the desired length, and facilitate sensor removal from the implantation site after use. We found that the polyethylene glycol (PEG)-bonded polyacrylamide (PAM) hydrogel fibers reduced inflammation compared with PAM hydrogel fibers, transdermally glowed, and continuously responded to blood glucose concentration changes for up to 140 days, showing their potential application for long-term in vivo continuous glucose monitoring.</description><subject>Acrylic Resins</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Blood</subject><subject>Blood glucose</subject><subject>Blood Glucose - analysis</subject><subject>Fluorescence</subject><subject>Gastroscopy</subject><subject>Glucose</subject><subject>Glycols</subject><subject>hydrocolloids</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Inflammation</subject><subject>Inflammation - prevention &amp; control</subject><subject>Male</subject><subject>Mice</subject><subject>monitoring</subject><subject>Monitoring, Physiologic - methods</subject><subject>Monomers</subject><subject>Physical Sciences</subject><subject>polyacrylamide</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols</subject><subject>Prostheses and Implants</subject><subject>Sensors</subject><subject>Swelling</subject><subject>Transplants &amp; implants</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvhzAmIuMAl7Yy_Yl8qoYoC0kocKGfLTpzUq2y82MlK_fck7NIFDlzswzzzaGZeQl4iXCBU7HI32HyBCFwLjqAekRWCxlJyDY_JCoBWpeKUn5FnOW8AQAsFT8kZRQVqblqRm3UcunL0aVuEodiHfSy6fqpj9sU2DmGMKQxdMeXlbfspJp9rP4zF3X2TYuf7og3Op_ycPGltn_2L439Obm8-3l5_LtdfP325_rAua6H0WDrRNBSEbMFKAZV0iKicdhIl4-hrwQTTrmmkA-2UBcq0cMJbjrLhsmbn5Oqg3U1u65tlkmR7s0tha9O9iTaYvytDuDNd3BuGQiEXs-DdUZDij8nn0WzDvFDf28HHKRs1X6sCpAv5_r8kSskE1aKCGX37D7qJUxrmO_zyaS3l4rs8QHWKOSffPkyNYJYszZKlOWU5d7z-c9kH_nd4M1AcgaXzpFOGMYOM6QV5dUA2eY7ypKh0pSkuo7851Fsbje1SyOb7NwrIAVADqyj7CchWt5w</recordid><startdate>20110816</startdate><enddate>20110816</enddate><creator>Heo, Yun Jung</creator><creator>Shibata, Hideaki</creator><creator>Okitsu, Teru</creator><creator>Kawanishi, Tetsuro</creator><creator>Takeuchi, Shoji</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110816</creationdate><title>Long-term in vivo glucose monitoring using fluorescent hydrogel fibers</title><author>Heo, Yun Jung ; Shibata, Hideaki ; Okitsu, Teru ; Kawanishi, Tetsuro ; Takeuchi, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-b5dd2056f0a65076b1118b9b616341ec53539bdd6b09b8a02395b5ea416d46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acrylic Resins</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Blood</topic><topic>Blood glucose</topic><topic>Blood Glucose - analysis</topic><topic>Fluorescence</topic><topic>Gastroscopy</topic><topic>Glucose</topic><topic>Glycols</topic><topic>hydrocolloids</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Inflammation</topic><topic>Inflammation - prevention &amp; control</topic><topic>Male</topic><topic>Mice</topic><topic>monitoring</topic><topic>Monitoring, Physiologic - methods</topic><topic>Monomers</topic><topic>Physical Sciences</topic><topic>polyacrylamide</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols</topic><topic>Prostheses and Implants</topic><topic>Sensors</topic><topic>Swelling</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Yun Jung</creatorcontrib><creatorcontrib>Shibata, Hideaki</creatorcontrib><creatorcontrib>Okitsu, Teru</creatorcontrib><creatorcontrib>Kawanishi, Tetsuro</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Yun Jung</au><au>Shibata, Hideaki</au><au>Okitsu, Teru</au><au>Kawanishi, Tetsuro</au><au>Takeuchi, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term in vivo glucose monitoring using fluorescent hydrogel fibers</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-08-16</date><risdate>2011</risdate><volume>108</volume><issue>33</issue><spage>13399</spage><epage>13403</epage><pages>13399-13403</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence-based sensors cannot remain at an implantation site and respond to blood glucose concentrations over an extended period. Here, we present a long-term in vivo glucose monitoring method using glucose-responsive fluorescent hydrogel fibers. We fabricated glucose-responsive fluorescent hydrogels in a fibrous structure because this structure enables the sensors to remain at the implantation site for a long period. Moreover, these fibers allow easy control of the amount of fluorescent sensors implanted, simply by cutting the fibers to the desired length, and facilitate sensor removal from the implantation site after use. We found that the polyethylene glycol (PEG)-bonded polyacrylamide (PAM) hydrogel fibers reduced inflammation compared with PAM hydrogel fibers, transdermally glowed, and continuously responded to blood glucose concentration changes for up to 140 days, showing their potential application for long-term in vivo continuous glucose monitoring.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21808049</pmid><doi>10.1073/pnas.1104954108</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (33), p.13399-13403
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1663529570
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acrylic Resins
Animals
Biocompatibility
Blood
Blood glucose
Blood Glucose - analysis
Fluorescence
Gastroscopy
Glucose
Glycols
hydrocolloids
Hydrogels
Hydrogels - chemistry
Inflammation
Inflammation - prevention & control
Male
Mice
monitoring
Monitoring, Physiologic - methods
Monomers
Physical Sciences
polyacrylamide
polyethylene glycol
Polyethylene Glycols
Prostheses and Implants
Sensors
Swelling
Transplants & implants
title Long-term in vivo glucose monitoring using fluorescent hydrogel fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20in%20vivo%20glucose%20monitoring%20using%20fluorescent%20hydrogel%20fibers&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Heo,%20Yun%20Jung&rft.date=2011-08-16&rft.volume=108&rft.issue=33&rft.spage=13399&rft.epage=13403&rft.pages=13399-13403&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1104954108&rft_dat=%3Cjstor_proqu%3E27979210%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884299665&rft_id=info:pmid/21808049&rft_jstor_id=27979210&rfr_iscdi=true