Isolation and characterization of salt-tolerant glutaminases from marine Micrococcus luteus K-3

Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fermentation and bioengineering 1994-01, Vol.77 (6), p.621-625
Hauptverfasser: Moriguchi, Mitsuaki, Sakai, Kenji, Tateyama, Ryoji, Furuta, Yoichi, Wakayama, Mamoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 6
container_start_page 621
container_title Journal of fermentation and bioengineering
container_volume 77
creator Moriguchi, Mitsuaki
Sakai, Kenji
Tateyama, Ryoji
Furuta, Yoichi
Wakayama, Mamoru
description Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purified about 190-fold with a 0.04% yield. The molecular weight of glutaminase II was also 86,000. Maximum activity of glutaminase I was observed at pH 8.0, 50°C and 8–16% NaCl. The optimal pH and temperature of glutaminase II were 8.5 and 50°C. The activity of glutaminase II was not affected by the presence of 8 to 16% NaCl. The presence of 10% NaCl enhanced thermal stability of glutaminase I. Both enzymes catalyzed the hydrolysis of l-glutamine, but not its hydroxylaminolysis. The K m values for l-glutamine were 4.4 (glutaminase I) and 6.5 mM (glutaminase II). Neither of the glutaminases were activated by the addition of 2 mM phosphate or 2 mM sulfate. p-Chloromercuribenzoate (0.01 mM) significantly inhibited glutaminase I, but not glutaminase II. The conserved sequences LA**V and V**GGT*A were observed in the N-terminal amino acid sequences of glutaminase I, similar to that for other glutaminases.
doi_str_mv 10.1016/0922-338X(94)90143-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16627524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0922338X94901430</els_id><sourcerecordid>16627524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-dc964f4d5cc9b4498820b3f4a1e36ca0d87323202584dc1e8253773af26249af3</originalsourceid><addsrcrecordid>eNp9kEtvFTEMRmcBUkvhDyAWs0AVLAacx-RONpVQVaAvtYtWYhe5Hqekmjtpk9xK5deTy1RdsrJkH1v-TtN8EPBFgDBfwUrZKTX8-mT1ZwtCqw5eNbsv7Z3mTc53AKBAwm7jjnOcsIQ4tziPLf3GhFQ4hT9LM_o241S6EidOOJf2dtoUXIcZM-fWp7hu15jCzO15oBQpEm1yWxmu5bRTb5vXHqfM757rXnP9_ejq8Gd3dvHj-PDbWUc9QOlGskZ7PfZE9kZrOwwSbpTXKFgZQhiHlZJKguwHPZLgQfZqtVLopZHaold7zf5y9z7Fhw3n4tYhE08Tzhw32Qlj5KqXuoJ6Aeu3OSf27j6FGuHJCXBbg26rym1VOavdP4MO6trH5_uYCSdfXVDIL7taGLDGVOz9gnmMDm9TRU4ubY1oQdXhwTLkKuIxcHKZAs_EY0hMxY0x_P-Jv22Ij4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16627524</pqid></control><display><type>article</type><title>Isolation and characterization of salt-tolerant glutaminases from marine Micrococcus luteus K-3</title><source>Alma/SFX Local Collection</source><creator>Moriguchi, Mitsuaki ; Sakai, Kenji ; Tateyama, Ryoji ; Furuta, Yoichi ; Wakayama, Mamoru</creator><creatorcontrib>Moriguchi, Mitsuaki ; Sakai, Kenji ; Tateyama, Ryoji ; Furuta, Yoichi ; Wakayama, Mamoru</creatorcontrib><description>Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purified about 190-fold with a 0.04% yield. The molecular weight of glutaminase II was also 86,000. Maximum activity of glutaminase I was observed at pH 8.0, 50°C and 8–16% NaCl. The optimal pH and temperature of glutaminase II were 8.5 and 50°C. The activity of glutaminase II was not affected by the presence of 8 to 16% NaCl. The presence of 10% NaCl enhanced thermal stability of glutaminase I. Both enzymes catalyzed the hydrolysis of l-glutamine, but not its hydroxylaminolysis. The K m values for l-glutamine were 4.4 (glutaminase I) and 6.5 mM (glutaminase II). Neither of the glutaminases were activated by the addition of 2 mM phosphate or 2 mM sulfate. p-Chloromercuribenzoate (0.01 mM) significantly inhibited glutaminase I, but not glutaminase II. The conserved sequences LA**V and V**GGT*A were observed in the N-terminal amino acid sequences of glutaminase I, similar to that for other glutaminases.</description><identifier>ISSN: 0922-338X</identifier><identifier>DOI: 10.1016/0922-338X(94)90143-0</identifier><identifier>CODEN: JFBIEX</identifier><language>eng</language><publisher>Osaka: Elsevier B.V</publisher><subject>ACIDE GLUTAMIQUE ; ACIDO GLUTAMICO ; ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; AMBIENTE MARINO ; AMIDE HYDROLASE ; AMIDO HIDROLASA ; ANALISIS MICROBIOLOGICO ; ANALYSE MICROBIOLOGIQUE ; Bacteriology ; Biological and medical sciences ; Biotechnology ; Enzyme engineering ; Fundamental and applied biological sciences. Psychology ; GLUTAMINA ; GLUTAMINE ; Improved methods for extraction and purification of enzymes ; Metabolism. Enzymes ; Methods. Procedures. Technologies ; Microbiology ; MICROCOCCUS ; Micrococcus luteus ; MILIEU MARIN ; TOLERANCE AU SEL ; TOLERANCIA A LA SAL</subject><ispartof>Journal of fermentation and bioengineering, 1994-01, Vol.77 (6), p.621-625</ispartof><rights>1994</rights><rights>1994 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-dc964f4d5cc9b4498820b3f4a1e36ca0d87323202584dc1e8253773af26249af3</citedby><cites>FETCH-LOGICAL-c500t-dc964f4d5cc9b4498820b3f4a1e36ca0d87323202584dc1e8253773af26249af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4160966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moriguchi, Mitsuaki</creatorcontrib><creatorcontrib>Sakai, Kenji</creatorcontrib><creatorcontrib>Tateyama, Ryoji</creatorcontrib><creatorcontrib>Furuta, Yoichi</creatorcontrib><creatorcontrib>Wakayama, Mamoru</creatorcontrib><title>Isolation and characterization of salt-tolerant glutaminases from marine Micrococcus luteus K-3</title><title>Journal of fermentation and bioengineering</title><description>Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purified about 190-fold with a 0.04% yield. The molecular weight of glutaminase II was also 86,000. Maximum activity of glutaminase I was observed at pH 8.0, 50°C and 8–16% NaCl. The optimal pH and temperature of glutaminase II were 8.5 and 50°C. The activity of glutaminase II was not affected by the presence of 8 to 16% NaCl. The presence of 10% NaCl enhanced thermal stability of glutaminase I. Both enzymes catalyzed the hydrolysis of l-glutamine, but not its hydroxylaminolysis. The K m values for l-glutamine were 4.4 (glutaminase I) and 6.5 mM (glutaminase II). Neither of the glutaminases were activated by the addition of 2 mM phosphate or 2 mM sulfate. p-Chloromercuribenzoate (0.01 mM) significantly inhibited glutaminase I, but not glutaminase II. The conserved sequences LA**V and V**GGT*A were observed in the N-terminal amino acid sequences of glutaminase I, similar to that for other glutaminases.</description><subject>ACIDE GLUTAMIQUE</subject><subject>ACIDO GLUTAMICO</subject><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>AMBIENTE MARINO</subject><subject>AMIDE HYDROLASE</subject><subject>AMIDO HIDROLASA</subject><subject>ANALISIS MICROBIOLOGICO</subject><subject>ANALYSE MICROBIOLOGIQUE</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Enzyme engineering</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GLUTAMINA</subject><subject>GLUTAMINE</subject><subject>Improved methods for extraction and purification of enzymes</subject><subject>Metabolism. Enzymes</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbiology</subject><subject>MICROCOCCUS</subject><subject>Micrococcus luteus</subject><subject>MILIEU MARIN</subject><subject>TOLERANCE AU SEL</subject><subject>TOLERANCIA A LA SAL</subject><issn>0922-338X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kEtvFTEMRmcBUkvhDyAWs0AVLAacx-RONpVQVaAvtYtWYhe5Hqekmjtpk9xK5deTy1RdsrJkH1v-TtN8EPBFgDBfwUrZKTX8-mT1ZwtCqw5eNbsv7Z3mTc53AKBAwm7jjnOcsIQ4tziPLf3GhFQ4hT9LM_o241S6EidOOJf2dtoUXIcZM-fWp7hu15jCzO15oBQpEm1yWxmu5bRTb5vXHqfM757rXnP9_ejq8Gd3dvHj-PDbWUc9QOlGskZ7PfZE9kZrOwwSbpTXKFgZQhiHlZJKguwHPZLgQfZqtVLopZHaold7zf5y9z7Fhw3n4tYhE08Tzhw32Qlj5KqXuoJ6Aeu3OSf27j6FGuHJCXBbg26rym1VOavdP4MO6trH5_uYCSdfXVDIL7taGLDGVOz9gnmMDm9TRU4ubY1oQdXhwTLkKuIxcHKZAs_EY0hMxY0x_P-Jv22Ij4g</recordid><startdate>19940101</startdate><enddate>19940101</enddate><creator>Moriguchi, Mitsuaki</creator><creator>Sakai, Kenji</creator><creator>Tateyama, Ryoji</creator><creator>Furuta, Yoichi</creator><creator>Wakayama, Mamoru</creator><general>Elsevier B.V</general><general>Society for Fermentation and Bioengineering</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>19940101</creationdate><title>Isolation and characterization of salt-tolerant glutaminases from marine Micrococcus luteus K-3</title><author>Moriguchi, Mitsuaki ; Sakai, Kenji ; Tateyama, Ryoji ; Furuta, Yoichi ; Wakayama, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-dc964f4d5cc9b4498820b3f4a1e36ca0d87323202584dc1e8253773af26249af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>ACIDE GLUTAMIQUE</topic><topic>ACIDO GLUTAMICO</topic><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>AMBIENTE MARINO</topic><topic>AMIDE HYDROLASE</topic><topic>AMIDO HIDROLASA</topic><topic>ANALISIS MICROBIOLOGICO</topic><topic>ANALYSE MICROBIOLOGIQUE</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Enzyme engineering</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GLUTAMINA</topic><topic>GLUTAMINE</topic><topic>Improved methods for extraction and purification of enzymes</topic><topic>Metabolism. Enzymes</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbiology</topic><topic>MICROCOCCUS</topic><topic>Micrococcus luteus</topic><topic>MILIEU MARIN</topic><topic>TOLERANCE AU SEL</topic><topic>TOLERANCIA A LA SAL</topic><toplevel>online_resources</toplevel><creatorcontrib>Moriguchi, Mitsuaki</creatorcontrib><creatorcontrib>Sakai, Kenji</creatorcontrib><creatorcontrib>Tateyama, Ryoji</creatorcontrib><creatorcontrib>Furuta, Yoichi</creatorcontrib><creatorcontrib>Wakayama, Mamoru</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of fermentation and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moriguchi, Mitsuaki</au><au>Sakai, Kenji</au><au>Tateyama, Ryoji</au><au>Furuta, Yoichi</au><au>Wakayama, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation and characterization of salt-tolerant glutaminases from marine Micrococcus luteus K-3</atitle><jtitle>Journal of fermentation and bioengineering</jtitle><date>1994-01-01</date><risdate>1994</risdate><volume>77</volume><issue>6</issue><spage>621</spage><epage>625</epage><pages>621-625</pages><issn>0922-338X</issn><coden>JFBIEX</coden><abstract>Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purified about 190-fold with a 0.04% yield. The molecular weight of glutaminase II was also 86,000. Maximum activity of glutaminase I was observed at pH 8.0, 50°C and 8–16% NaCl. The optimal pH and temperature of glutaminase II were 8.5 and 50°C. The activity of glutaminase II was not affected by the presence of 8 to 16% NaCl. The presence of 10% NaCl enhanced thermal stability of glutaminase I. Both enzymes catalyzed the hydrolysis of l-glutamine, but not its hydroxylaminolysis. The K m values for l-glutamine were 4.4 (glutaminase I) and 6.5 mM (glutaminase II). Neither of the glutaminases were activated by the addition of 2 mM phosphate or 2 mM sulfate. p-Chloromercuribenzoate (0.01 mM) significantly inhibited glutaminase I, but not glutaminase II. The conserved sequences LA**V and V**GGT*A were observed in the N-terminal amino acid sequences of glutaminase I, similar to that for other glutaminases.</abstract><cop>Osaka</cop><pub>Elsevier B.V</pub><doi>10.1016/0922-338X(94)90143-0</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0922-338X
ispartof Journal of fermentation and bioengineering, 1994-01, Vol.77 (6), p.621-625
issn 0922-338X
language eng
recordid cdi_proquest_miscellaneous_16627524
source Alma/SFX Local Collection
subjects ACIDE GLUTAMIQUE
ACIDO GLUTAMICO
ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
AMBIENTE MARINO
AMIDE HYDROLASE
AMIDO HIDROLASA
ANALISIS MICROBIOLOGICO
ANALYSE MICROBIOLOGIQUE
Bacteriology
Biological and medical sciences
Biotechnology
Enzyme engineering
Fundamental and applied biological sciences. Psychology
GLUTAMINA
GLUTAMINE
Improved methods for extraction and purification of enzymes
Metabolism. Enzymes
Methods. Procedures. Technologies
Microbiology
MICROCOCCUS
Micrococcus luteus
MILIEU MARIN
TOLERANCE AU SEL
TOLERANCIA A LA SAL
title Isolation and characterization of salt-tolerant glutaminases from marine Micrococcus luteus K-3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20and%20characterization%20of%20salt-tolerant%20glutaminases%20from%20marine%20Micrococcus%20luteus%20K-3&rft.jtitle=Journal%20of%20fermentation%20and%20bioengineering&rft.au=Moriguchi,%20Mitsuaki&rft.date=1994-01-01&rft.volume=77&rft.issue=6&rft.spage=621&rft.epage=625&rft.pages=621-625&rft.issn=0922-338X&rft.coden=JFBIEX&rft_id=info:doi/10.1016/0922-338X(94)90143-0&rft_dat=%3Cproquest_cross%3E16627524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16627524&rft_id=info:pmid/&rft_els_id=0922338X94901430&rfr_iscdi=true