Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays

In this paper, based on the knowledge of memristor and recurrent neural networks (RNNs), the model of the memristor-based RNNs with discrete and distributed delays is established. By constructing proper Lyapunov functionals and using inequality technique, several sufficient conditions are given to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2015-01, Vol.61, p.49-58
Hauptverfasser: Zhang, Guodong, Shen, Yi, Yin, Quan, Sun, Junwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue
container_start_page 49
container_title Neural networks
container_volume 61
creator Zhang, Guodong
Shen, Yi
Yin, Quan
Sun, Junwei
description In this paper, based on the knowledge of memristor and recurrent neural networks (RNNs), the model of the memristor-based RNNs with discrete and distributed delays is established. By constructing proper Lyapunov functionals and using inequality technique, several sufficient conditions are given to ensure the passivity of the memristor-based RNNs with discrete and distributed delays in the sense of Filippov solutions. The passivity conditions here are presented in terms of linear matrix inequalities, which can be easily solved by using Matlab Tools. In addition, the results of this paper complement and extend the earlier publications. Finally, numerical simulations are employed to illustrate the effectiveness of the obtained results.
doi_str_mv 10.1016/j.neunet.2014.10.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1662428933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360801400224X</els_id><sourcerecordid>1662428933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-2693182b0c1e48f981448780aa8bcc1221f80350722249f8cf26effbcdccf9bf3</originalsourceid><addsrcrecordid>eNp9kMtLAzEQxoMoWh__gcgevWzNq2n2Ioj4AkEPeg7Z7ART91Ez2Zb-96ZUPXoaZvi--WZ-hJwzOmWUqavFtIexhzTllMk8mlIq98iE6XlV8rnm-2RCdSVKRTU9IseIC0qp0lIckiM-k4orISYEXi1iWIW0KWxv2w0GLPwQiw66GDANsawtQlNEcGOM0Kcip0bb5pLWQ_zEYh3SR9EEdBES5CXNtkkx1GPKvgZau8FTcuBti3D2U0_I-_3d2-1j-fzy8HR781w6KXgquaoE07ymjoHUvtJMSj3X1FpdO8c4Z15TMaNzzrmsvHaeK_C-do1zvqq9OCGXu73LOHyNgMl0-TBoW9vDMKJhSnHJMxWRpXIndXFAjODNMobOxo1h1GwBm4XZATZbwNtpBpxtFz8JY91B82f6JZoF1zsB5D9XAaJBF6B30ITMMJlmCP8nfAOCE5Ch</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662428933</pqid></control><display><type>article</type><title>Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Guodong ; Shen, Yi ; Yin, Quan ; Sun, Junwei</creator><creatorcontrib>Zhang, Guodong ; Shen, Yi ; Yin, Quan ; Sun, Junwei</creatorcontrib><description>In this paper, based on the knowledge of memristor and recurrent neural networks (RNNs), the model of the memristor-based RNNs with discrete and distributed delays is established. By constructing proper Lyapunov functionals and using inequality technique, several sufficient conditions are given to ensure the passivity of the memristor-based RNNs with discrete and distributed delays in the sense of Filippov solutions. The passivity conditions here are presented in terms of linear matrix inequalities, which can be easily solved by using Matlab Tools. In addition, the results of this paper complement and extend the earlier publications. Finally, numerical simulations are employed to illustrate the effectiveness of the obtained results.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2014.10.004</identifier><identifier>PMID: 25462633</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Filippov solution ; Memristor ; Models, Theoretical ; Neural networks ; Neural Networks (Computer) ; Passivity ; Time delay</subject><ispartof>Neural networks, 2015-01, Vol.61, p.49-58</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-2693182b0c1e48f981448780aa8bcc1221f80350722249f8cf26effbcdccf9bf3</citedby><cites>FETCH-LOGICAL-c432t-2693182b0c1e48f981448780aa8bcc1221f80350722249f8cf26effbcdccf9bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2014.10.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25462633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guodong</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Yin, Quan</creatorcontrib><creatorcontrib>Sun, Junwei</creatorcontrib><title>Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, based on the knowledge of memristor and recurrent neural networks (RNNs), the model of the memristor-based RNNs with discrete and distributed delays is established. By constructing proper Lyapunov functionals and using inequality technique, several sufficient conditions are given to ensure the passivity of the memristor-based RNNs with discrete and distributed delays in the sense of Filippov solutions. The passivity conditions here are presented in terms of linear matrix inequalities, which can be easily solved by using Matlab Tools. In addition, the results of this paper complement and extend the earlier publications. Finally, numerical simulations are employed to illustrate the effectiveness of the obtained results.</description><subject>Algorithms</subject><subject>Filippov solution</subject><subject>Memristor</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Passivity</subject><subject>Time delay</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtLAzEQxoMoWh__gcgevWzNq2n2Ioj4AkEPeg7Z7ART91Ez2Zb-96ZUPXoaZvi--WZ-hJwzOmWUqavFtIexhzTllMk8mlIq98iE6XlV8rnm-2RCdSVKRTU9IseIC0qp0lIckiM-k4orISYEXi1iWIW0KWxv2w0GLPwQiw66GDANsawtQlNEcGOM0Kcip0bb5pLWQ_zEYh3SR9EEdBES5CXNtkkx1GPKvgZau8FTcuBti3D2U0_I-_3d2-1j-fzy8HR781w6KXgquaoE07ymjoHUvtJMSj3X1FpdO8c4Z15TMaNzzrmsvHaeK_C-do1zvqq9OCGXu73LOHyNgMl0-TBoW9vDMKJhSnHJMxWRpXIndXFAjODNMobOxo1h1GwBm4XZATZbwNtpBpxtFz8JY91B82f6JZoF1zsB5D9XAaJBF6B30ITMMJlmCP8nfAOCE5Ch</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Zhang, Guodong</creator><creator>Shen, Yi</creator><creator>Yin, Quan</creator><creator>Sun, Junwei</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays</title><author>Zhang, Guodong ; Shen, Yi ; Yin, Quan ; Sun, Junwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-2693182b0c1e48f981448780aa8bcc1221f80350722249f8cf26effbcdccf9bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Filippov solution</topic><topic>Memristor</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Passivity</topic><topic>Time delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guodong</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Yin, Quan</creatorcontrib><creatorcontrib>Sun, Junwei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guodong</au><au>Shen, Yi</au><au>Yin, Quan</au><au>Sun, Junwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2015-01</date><risdate>2015</risdate><volume>61</volume><spage>49</spage><epage>58</epage><pages>49-58</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this paper, based on the knowledge of memristor and recurrent neural networks (RNNs), the model of the memristor-based RNNs with discrete and distributed delays is established. By constructing proper Lyapunov functionals and using inequality technique, several sufficient conditions are given to ensure the passivity of the memristor-based RNNs with discrete and distributed delays in the sense of Filippov solutions. The passivity conditions here are presented in terms of linear matrix inequalities, which can be easily solved by using Matlab Tools. In addition, the results of this paper complement and extend the earlier publications. Finally, numerical simulations are employed to illustrate the effectiveness of the obtained results.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25462633</pmid><doi>10.1016/j.neunet.2014.10.004</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2015-01, Vol.61, p.49-58
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1662428933
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Filippov solution
Memristor
Models, Theoretical
Neural networks
Neural Networks (Computer)
Passivity
Time delay
title Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivity%20analysis%20for%20memristor-based%20recurrent%20neural%20networks%20with%20discrete%20and%20distributed%20delays&rft.jtitle=Neural%20networks&rft.au=Zhang,%20Guodong&rft.date=2015-01&rft.volume=61&rft.spage=49&rft.epage=58&rft.pages=49-58&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2014.10.004&rft_dat=%3Cproquest_cross%3E1662428933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662428933&rft_id=info:pmid/25462633&rft_els_id=S089360801400224X&rfr_iscdi=true