River network fractal geometry and its computer simulation

The hierarchical ordinal and statistical models of river networks are proposed. Their investigation has been carried out on the basis of river networks computer simulation as well as on empirical data analysis. The simulated river networks display self‐similar behavior on small scales (the fractal d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 1993-10, Vol.29 (10), p.3569-3575
Hauptverfasser: Nikora, Vladimir I., Sapozhnikov, Victor B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3575
container_issue 10
container_start_page 3569
container_title Water resources research
container_volume 29
creator Nikora, Vladimir I.
Sapozhnikov, Victor B.
description The hierarchical ordinal and statistical models of river networks are proposed. Their investigation has been carried out on the basis of river networks computer simulation as well as on empirical data analysis. The simulated river networks display self‐similar behavior on small scales (the fractal dimension D ≈ 1.52 and Hurst's exponent H = 1.0) and self‐affine behavior on large scales (the lacunary dimension DG ≈ 1.71, H ≈ 0.58). Similar behavior is also qualitatively characteristic for natural river networks (for catchment areas from 142 to 63,700 km2 we obtained DG ≈ 1.87 and H ≈ 0.73). Thus in both cases one finds a region of scales with self‐affine behavior (H < 1) and with DG < 2. Proceeding from fractal properties of the river networks, the theoretical basis of scaling relationships L ∼ Aβ and ℒ ∼ Aε, widely used in hydrology, are given (L, ℒ and A denote the main river length, the total length of the river network, and catchment area, respectively); β = 1/(1+H) and ε=DG/2.
doi_str_mv 10.1029/93WR00966
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16619135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16619135</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3592-43ac60444b0c3da773bc78437bbd9884af65fcad8421bb574ffe752033d3acf83</originalsourceid><addsrcrecordid>eNp10M1LwzAYx_EgCs7pwf-gJ8FDXdK8Nd60uE0QhTIZeAlpm0hcX2aSOvffW6ns5um5fL7P4QfAJYI3CCZiJvA6h1AwdgQmSBASc8HxMZhASHCMsOCn4Mz7DwgRoYxPwG1uv7SLWh12ndtExqkyqDp6112jg9tHqq0iG3xUds22D4P0tulrFWzXnoMTo2qvL_7uFLzOH1bZMn56WTxmd0-xwlQkMcGqZJAQUsASV4pzXJQ8JZgXRSXSlCjDqClVlZIEFQXlxBjNaQIxrobSpHgKrsa_W9d99toH2Vhf6rpWre56LxFjSCBMB3g9wtJ13jtt5NbZRrm9RFD-riMP6wx2NtqdrfX-fyjXeZazBCVDEY-F9UF_HwrlNpJxzKlcPy8kR_fLOV1l8g3_AMqqdJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16619135</pqid></control><display><type>article</type><title>River network fractal geometry and its computer simulation</title><source>Access via Wiley Online Library</source><creator>Nikora, Vladimir I. ; Sapozhnikov, Victor B.</creator><creatorcontrib>Nikora, Vladimir I. ; Sapozhnikov, Victor B.</creatorcontrib><description>The hierarchical ordinal and statistical models of river networks are proposed. Their investigation has been carried out on the basis of river networks computer simulation as well as on empirical data analysis. The simulated river networks display self‐similar behavior on small scales (the fractal dimension D ≈ 1.52 and Hurst's exponent H = 1.0) and self‐affine behavior on large scales (the lacunary dimension DG ≈ 1.71, H ≈ 0.58). Similar behavior is also qualitatively characteristic for natural river networks (for catchment areas from 142 to 63,700 km2 we obtained DG ≈ 1.87 and H ≈ 0.73). Thus in both cases one finds a region of scales with self‐affine behavior (H &lt; 1) and with DG &lt; 2. Proceeding from fractal properties of the river networks, the theoretical basis of scaling relationships L ∼ Aβ and ℒ ∼ Aε, widely used in hydrology, are given (L, ℒ and A denote the main river length, the total length of the river network, and catchment area, respectively); β = 1/(1+H) and ε=DG/2.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/93WR00966</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Freshwater</subject><ispartof>Water resources research, 1993-10, Vol.29 (10), p.3569-3575</ispartof><rights>Copyright 1993 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3592-43ac60444b0c3da773bc78437bbd9884af65fcad8421bb574ffe752033d3acf83</citedby><cites>FETCH-LOGICAL-a3592-43ac60444b0c3da773bc78437bbd9884af65fcad8421bb574ffe752033d3acf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F93WR00966$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F93WR00966$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids></links><search><creatorcontrib>Nikora, Vladimir I.</creatorcontrib><creatorcontrib>Sapozhnikov, Victor B.</creatorcontrib><title>River network fractal geometry and its computer simulation</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>The hierarchical ordinal and statistical models of river networks are proposed. Their investigation has been carried out on the basis of river networks computer simulation as well as on empirical data analysis. The simulated river networks display self‐similar behavior on small scales (the fractal dimension D ≈ 1.52 and Hurst's exponent H = 1.0) and self‐affine behavior on large scales (the lacunary dimension DG ≈ 1.71, H ≈ 0.58). Similar behavior is also qualitatively characteristic for natural river networks (for catchment areas from 142 to 63,700 km2 we obtained DG ≈ 1.87 and H ≈ 0.73). Thus in both cases one finds a region of scales with self‐affine behavior (H &lt; 1) and with DG &lt; 2. Proceeding from fractal properties of the river networks, the theoretical basis of scaling relationships L ∼ Aβ and ℒ ∼ Aε, widely used in hydrology, are given (L, ℒ and A denote the main river length, the total length of the river network, and catchment area, respectively); β = 1/(1+H) and ε=DG/2.</description><subject>Freshwater</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp10M1LwzAYx_EgCs7pwf-gJ8FDXdK8Nd60uE0QhTIZeAlpm0hcX2aSOvffW6ns5um5fL7P4QfAJYI3CCZiJvA6h1AwdgQmSBASc8HxMZhASHCMsOCn4Mz7DwgRoYxPwG1uv7SLWh12ndtExqkyqDp6112jg9tHqq0iG3xUds22D4P0tulrFWzXnoMTo2qvL_7uFLzOH1bZMn56WTxmd0-xwlQkMcGqZJAQUsASV4pzXJQ8JZgXRSXSlCjDqClVlZIEFQXlxBjNaQIxrobSpHgKrsa_W9d99toH2Vhf6rpWre56LxFjSCBMB3g9wtJ13jtt5NbZRrm9RFD-riMP6wx2NtqdrfX-fyjXeZazBCVDEY-F9UF_HwrlNpJxzKlcPy8kR_fLOV1l8g3_AMqqdJY</recordid><startdate>199310</startdate><enddate>199310</enddate><creator>Nikora, Vladimir I.</creator><creator>Sapozhnikov, Victor B.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>199310</creationdate><title>River network fractal geometry and its computer simulation</title><author>Nikora, Vladimir I. ; Sapozhnikov, Victor B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3592-43ac60444b0c3da773bc78437bbd9884af65fcad8421bb574ffe752033d3acf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Freshwater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikora, Vladimir I.</creatorcontrib><creatorcontrib>Sapozhnikov, Victor B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikora, Vladimir I.</au><au>Sapozhnikov, Victor B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>River network fractal geometry and its computer simulation</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1993-10</date><risdate>1993</risdate><volume>29</volume><issue>10</issue><spage>3569</spage><epage>3575</epage><pages>3569-3575</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The hierarchical ordinal and statistical models of river networks are proposed. Their investigation has been carried out on the basis of river networks computer simulation as well as on empirical data analysis. The simulated river networks display self‐similar behavior on small scales (the fractal dimension D ≈ 1.52 and Hurst's exponent H = 1.0) and self‐affine behavior on large scales (the lacunary dimension DG ≈ 1.71, H ≈ 0.58). Similar behavior is also qualitatively characteristic for natural river networks (for catchment areas from 142 to 63,700 km2 we obtained DG ≈ 1.87 and H ≈ 0.73). Thus in both cases one finds a region of scales with self‐affine behavior (H &lt; 1) and with DG &lt; 2. Proceeding from fractal properties of the river networks, the theoretical basis of scaling relationships L ∼ Aβ and ℒ ∼ Aε, widely used in hydrology, are given (L, ℒ and A denote the main river length, the total length of the river network, and catchment area, respectively); β = 1/(1+H) and ε=DG/2.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/93WR00966</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 1993-10, Vol.29 (10), p.3569-3575
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_16619135
source Access via Wiley Online Library
subjects Freshwater
title River network fractal geometry and its computer simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=River%20network%20fractal%20geometry%20and%20its%20computer%20simulation&rft.jtitle=Water%20resources%20research&rft.au=Nikora,%20Vladimir%20I.&rft.date=1993-10&rft.volume=29&rft.issue=10&rft.spage=3569&rft.epage=3575&rft.pages=3569-3575&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/93WR00966&rft_dat=%3Cproquest_cross%3E16619135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16619135&rft_id=info:pmid/&rfr_iscdi=true