Synthesis of nitrogen-doped ZnO by sol—gel method: characterization and its application on visible photocatalytic degradation of 2,4-D and picloram herbicides
In this work, nitrogen-doped ZnO material was synthesized by the sol-gel method using zinc acetate as the precursor and urea as the nitrogen source (15, 20, 25 and 30% wt.). For comparative purposes, bare ZnO was also prepared. The influence of N doping on structural, morphological, optical and phot...
Gespeichert in:
Veröffentlicht in: | Photochemical & photobiological sciences 2015-03, Vol.14 (3), p.536-542 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, nitrogen-doped ZnO material was synthesized by the sol-gel method using zinc acetate as the precursor and urea as the nitrogen source (15, 20, 25 and 30% wt.). For comparative purposes, bare ZnO was also prepared. The influence of N doping on structural, morphological, optical and photocatalytic properties was investigated. The synthesized catalysts were characterized by XRD, SEM-EDS, diffuse reflectance UV-Vis spectroscopy, BET and XPS analysis. The photocatalytic activity of N-doped ZnO catalysts was evaluated during the degradation of a mixture of herbicides (2,4-D and picloram) under visible radiation ≥400 nm. The photo-absorption wavelength range of the N-doped ZnO samples was shifted to longer wavelength compared to those of the unmodified ZnO. Among different amounts of dopant agent, the 30% N-doped ZnO material showed higher visible-light activity compared with pure ZnO. Several degradation by-products were identified by using HPLC and ESI-MS/MS. The enhancement of visible photocatalytic activity of the N-doped ZnO semiconductor could be mainly due to their capability in reducing the electron-hole pair recombination. |
---|---|
ISSN: | 1474-905X 1474-9092 |
DOI: | 10.1039/c4pp00273c |