Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic

X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2015-03, Vol.54 (8), p.1611-1627
Hauptverfasser: Yao, Huili, Rui, Huan, Kumar, Ritesh, Eshelman, Kate, Lovell, Scott, Battaile, Kevin P, Im, Wonpil, Rivera, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1627
container_issue 8
container_start_page 1611
container_title Biochemistry (Easton)
container_volume 54
creator Yao, Huili
Rui, Huan
Kumar, Ritesh
Eshelman, Kate
Lovell, Scott
Battaile, Kevin P
Im, Wonpil
Rivera, Mario
description X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.
doi_str_mv 10.1021/bi501255r
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660659546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660659546</sourcerecordid><originalsourceid>FETCH-LOGICAL-a449t-dfca59b0d0d50aa8dd3e30870998cf0b6186f2715de9b14ea00a57563e1c6f593</originalsourceid><addsrcrecordid>eNqFkbFOHDEURS0UFDYkBT8QuYkExcDzjO0Zl7DsJkiEpCD1yGM_I5NdG2yPgL9nNgtUSKnevdLRKd4l5IDBMYOanQxeAKuFSDtkxkQNFVdKfCAzAJBVrSTskU85306VQ8s_kr1aSA5MNTNS5jEYTAUt_RmLjyHTKywPMf314Yb-jgkz1cHSc5-LDoUuMaX46K3OSOcYCqZMF0EPK6Rn2kzVRzchvvhAl2MwG-U_wUWawnXSznnzmew6vcr45eXukz_LxfX8R3X56_vF_PSy0pyrUllntFADWLACtO6sbbCBrgWlOuNgkKyTrm6ZsKgGxlEDaNEK2SAz0gnV7JPDrfcuxfsRc-nXPhtcrXTAOOaedY2UvG2l_D8qJUihBN-gR1vUpJhzQtffJb_W6aln0G_26N_2mNivL9pxWKN9I18HmIBvW0Cb3N_GMYXpIe-IngGw65JL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660659546</pqid></control><display><type>article</type><title>Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic</title><source>MEDLINE</source><source>ACS Publications</source><creator>Yao, Huili ; Rui, Huan ; Kumar, Ritesh ; Eshelman, Kate ; Lovell, Scott ; Battaile, Kevin P ; Im, Wonpil ; Rivera, Mario</creator><creatorcontrib>Yao, Huili ; Rui, Huan ; Kumar, Ritesh ; Eshelman, Kate ; Lovell, Scott ; Battaile, Kevin P ; Im, Wonpil ; Rivera, Mario</creatorcontrib><description>X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi501255r</identifier><identifier>PMID: 25640193</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Substitution ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; binding sites ; Catalytic Domain ; Ceruloplasmin - chemistry ; Ceruloplasmin - genetics ; Ceruloplasmin - metabolism ; crystallization ; Crystallography, X-Ray ; crystals ; Cytochrome b Group - chemistry ; Cytochrome b Group - genetics ; Cytochrome b Group - metabolism ; Ferritins - chemistry ; Ferritins - genetics ; Ferritins - metabolism ; ferroxidase ; Hydrophobic and Hydrophilic Interactions ; hydrophobic bonding ; ions ; Iron ; iron phosphates ; ligands ; Models, Molecular ; molecular dynamics ; mutants ; Mutation, Missense ; oxidation ; Oxidation-Reduction ; Protein Folding ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - chemistry ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - metabolism ; soaking ; X-ray diffraction</subject><ispartof>Biochemistry (Easton), 2015-03, Vol.54 (8), p.1611-1627</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a449t-dfca59b0d0d50aa8dd3e30870998cf0b6186f2715de9b14ea00a57563e1c6f593</citedby><cites>FETCH-LOGICAL-a449t-dfca59b0d0d50aa8dd3e30870998cf0b6186f2715de9b14ea00a57563e1c6f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi501255r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi501255r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25640193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Huili</creatorcontrib><creatorcontrib>Rui, Huan</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Eshelman, Kate</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Battaile, Kevin P</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Rivera, Mario</creatorcontrib><title>Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.</description><subject>Amino Acid Substitution</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>binding sites</subject><subject>Catalytic Domain</subject><subject>Ceruloplasmin - chemistry</subject><subject>Ceruloplasmin - genetics</subject><subject>Ceruloplasmin - metabolism</subject><subject>crystallization</subject><subject>Crystallography, X-Ray</subject><subject>crystals</subject><subject>Cytochrome b Group - chemistry</subject><subject>Cytochrome b Group - genetics</subject><subject>Cytochrome b Group - metabolism</subject><subject>Ferritins - chemistry</subject><subject>Ferritins - genetics</subject><subject>Ferritins - metabolism</subject><subject>ferroxidase</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>hydrophobic bonding</subject><subject>ions</subject><subject>Iron</subject><subject>iron phosphates</subject><subject>ligands</subject><subject>Models, Molecular</subject><subject>molecular dynamics</subject><subject>mutants</subject><subject>Mutation, Missense</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Protein Folding</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - chemistry</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>soaking</subject><subject>X-ray diffraction</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbFOHDEURS0UFDYkBT8QuYkExcDzjO0Zl7DsJkiEpCD1yGM_I5NdG2yPgL9nNgtUSKnevdLRKd4l5IDBMYOanQxeAKuFSDtkxkQNFVdKfCAzAJBVrSTskU85306VQ8s_kr1aSA5MNTNS5jEYTAUt_RmLjyHTKywPMf314Yb-jgkz1cHSc5-LDoUuMaX46K3OSOcYCqZMF0EPK6Rn2kzVRzchvvhAl2MwG-U_wUWawnXSznnzmew6vcr45eXukz_LxfX8R3X56_vF_PSy0pyrUllntFADWLACtO6sbbCBrgWlOuNgkKyTrm6ZsKgGxlEDaNEK2SAz0gnV7JPDrfcuxfsRc-nXPhtcrXTAOOaedY2UvG2l_D8qJUihBN-gR1vUpJhzQtffJb_W6aln0G_26N_2mNivL9pxWKN9I18HmIBvW0Cb3N_GMYXpIe-IngGw65JL</recordid><startdate>20150303</startdate><enddate>20150303</enddate><creator>Yao, Huili</creator><creator>Rui, Huan</creator><creator>Kumar, Ritesh</creator><creator>Eshelman, Kate</creator><creator>Lovell, Scott</creator><creator>Battaile, Kevin P</creator><creator>Im, Wonpil</creator><creator>Rivera, Mario</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20150303</creationdate><title>Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic</title><author>Yao, Huili ; Rui, Huan ; Kumar, Ritesh ; Eshelman, Kate ; Lovell, Scott ; Battaile, Kevin P ; Im, Wonpil ; Rivera, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a449t-dfca59b0d0d50aa8dd3e30870998cf0b6186f2715de9b14ea00a57563e1c6f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Substitution</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>binding sites</topic><topic>Catalytic Domain</topic><topic>Ceruloplasmin - chemistry</topic><topic>Ceruloplasmin - genetics</topic><topic>Ceruloplasmin - metabolism</topic><topic>crystallization</topic><topic>Crystallography, X-Ray</topic><topic>crystals</topic><topic>Cytochrome b Group - chemistry</topic><topic>Cytochrome b Group - genetics</topic><topic>Cytochrome b Group - metabolism</topic><topic>Ferritins - chemistry</topic><topic>Ferritins - genetics</topic><topic>Ferritins - metabolism</topic><topic>ferroxidase</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>hydrophobic bonding</topic><topic>ions</topic><topic>Iron</topic><topic>iron phosphates</topic><topic>ligands</topic><topic>Models, Molecular</topic><topic>molecular dynamics</topic><topic>mutants</topic><topic>Mutation, Missense</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Protein Folding</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - chemistry</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>soaking</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Huili</creatorcontrib><creatorcontrib>Rui, Huan</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Eshelman, Kate</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Battaile, Kevin P</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Rivera, Mario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Huili</au><au>Rui, Huan</au><au>Kumar, Ritesh</au><au>Eshelman, Kate</au><au>Lovell, Scott</au><au>Battaile, Kevin P</au><au>Im, Wonpil</au><au>Rivera, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2015-03-03</date><risdate>2015</risdate><volume>54</volume><issue>8</issue><spage>1611</spage><epage>1627</epage><pages>1611-1627</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25640193</pmid><doi>10.1021/bi501255r</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2015-03, Vol.54 (8), p.1611-1627
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_proquest_miscellaneous_1660659546
source MEDLINE; ACS Publications
subjects Amino Acid Substitution
Bacterial Outer Membrane Proteins - chemistry
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
binding sites
Catalytic Domain
Ceruloplasmin - chemistry
Ceruloplasmin - genetics
Ceruloplasmin - metabolism
crystallization
Crystallography, X-Ray
crystals
Cytochrome b Group - chemistry
Cytochrome b Group - genetics
Cytochrome b Group - metabolism
Ferritins - chemistry
Ferritins - genetics
Ferritins - metabolism
ferroxidase
Hydrophobic and Hydrophilic Interactions
hydrophobic bonding
ions
Iron
iron phosphates
ligands
Models, Molecular
molecular dynamics
mutants
Mutation, Missense
oxidation
Oxidation-Reduction
Protein Folding
Pseudomonas aeruginosa
Pseudomonas aeruginosa - chemistry
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - metabolism
soaking
X-ray diffraction
title Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concerted%20Motions%20Networking%20Pores%20and%20Distant%20Ferroxidase%20Centers%20Enable%20Bacterioferritin%20Function%20and%20Iron%20Traffic&rft.jtitle=Biochemistry%20(Easton)&rft.au=Yao,%20Huili&rft.date=2015-03-03&rft.volume=54&rft.issue=8&rft.spage=1611&rft.epage=1627&rft.pages=1611-1627&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi501255r&rft_dat=%3Cproquest_cross%3E1660659546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660659546&rft_id=info:pmid/25640193&rfr_iscdi=true