Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic
X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show on...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2015-03, Vol.54 (8), p.1611-1627 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1627 |
---|---|
container_issue | 8 |
container_start_page | 1611 |
container_title | Biochemistry (Easton) |
container_volume | 54 |
creator | Yao, Huili Rui, Huan Kumar, Ritesh Eshelman, Kate Lovell, Scott Battaile, Kevin P Im, Wonpil Rivera, Mario |
description | X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral. |
doi_str_mv | 10.1021/bi501255r |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660659546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660659546</sourcerecordid><originalsourceid>FETCH-LOGICAL-a449t-dfca59b0d0d50aa8dd3e30870998cf0b6186f2715de9b14ea00a57563e1c6f593</originalsourceid><addsrcrecordid>eNqFkbFOHDEURS0UFDYkBT8QuYkExcDzjO0Zl7DsJkiEpCD1yGM_I5NdG2yPgL9nNgtUSKnevdLRKd4l5IDBMYOanQxeAKuFSDtkxkQNFVdKfCAzAJBVrSTskU85306VQ8s_kr1aSA5MNTNS5jEYTAUt_RmLjyHTKywPMf314Yb-jgkz1cHSc5-LDoUuMaX46K3OSOcYCqZMF0EPK6Rn2kzVRzchvvhAl2MwG-U_wUWawnXSznnzmew6vcr45eXukz_LxfX8R3X56_vF_PSy0pyrUllntFADWLACtO6sbbCBrgWlOuNgkKyTrm6ZsKgGxlEDaNEK2SAz0gnV7JPDrfcuxfsRc-nXPhtcrXTAOOaedY2UvG2l_D8qJUihBN-gR1vUpJhzQtffJb_W6aln0G_26N_2mNivL9pxWKN9I18HmIBvW0Cb3N_GMYXpIe-IngGw65JL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660659546</pqid></control><display><type>article</type><title>Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic</title><source>MEDLINE</source><source>ACS Publications</source><creator>Yao, Huili ; Rui, Huan ; Kumar, Ritesh ; Eshelman, Kate ; Lovell, Scott ; Battaile, Kevin P ; Im, Wonpil ; Rivera, Mario</creator><creatorcontrib>Yao, Huili ; Rui, Huan ; Kumar, Ritesh ; Eshelman, Kate ; Lovell, Scott ; Battaile, Kevin P ; Im, Wonpil ; Rivera, Mario</creatorcontrib><description>X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi501255r</identifier><identifier>PMID: 25640193</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Substitution ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; binding sites ; Catalytic Domain ; Ceruloplasmin - chemistry ; Ceruloplasmin - genetics ; Ceruloplasmin - metabolism ; crystallization ; Crystallography, X-Ray ; crystals ; Cytochrome b Group - chemistry ; Cytochrome b Group - genetics ; Cytochrome b Group - metabolism ; Ferritins - chemistry ; Ferritins - genetics ; Ferritins - metabolism ; ferroxidase ; Hydrophobic and Hydrophilic Interactions ; hydrophobic bonding ; ions ; Iron ; iron phosphates ; ligands ; Models, Molecular ; molecular dynamics ; mutants ; Mutation, Missense ; oxidation ; Oxidation-Reduction ; Protein Folding ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - chemistry ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - metabolism ; soaking ; X-ray diffraction</subject><ispartof>Biochemistry (Easton), 2015-03, Vol.54 (8), p.1611-1627</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a449t-dfca59b0d0d50aa8dd3e30870998cf0b6186f2715de9b14ea00a57563e1c6f593</citedby><cites>FETCH-LOGICAL-a449t-dfca59b0d0d50aa8dd3e30870998cf0b6186f2715de9b14ea00a57563e1c6f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi501255r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi501255r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25640193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Huili</creatorcontrib><creatorcontrib>Rui, Huan</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Eshelman, Kate</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Battaile, Kevin P</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Rivera, Mario</creatorcontrib><title>Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.</description><subject>Amino Acid Substitution</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>binding sites</subject><subject>Catalytic Domain</subject><subject>Ceruloplasmin - chemistry</subject><subject>Ceruloplasmin - genetics</subject><subject>Ceruloplasmin - metabolism</subject><subject>crystallization</subject><subject>Crystallography, X-Ray</subject><subject>crystals</subject><subject>Cytochrome b Group - chemistry</subject><subject>Cytochrome b Group - genetics</subject><subject>Cytochrome b Group - metabolism</subject><subject>Ferritins - chemistry</subject><subject>Ferritins - genetics</subject><subject>Ferritins - metabolism</subject><subject>ferroxidase</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>hydrophobic bonding</subject><subject>ions</subject><subject>Iron</subject><subject>iron phosphates</subject><subject>ligands</subject><subject>Models, Molecular</subject><subject>molecular dynamics</subject><subject>mutants</subject><subject>Mutation, Missense</subject><subject>oxidation</subject><subject>Oxidation-Reduction</subject><subject>Protein Folding</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - chemistry</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>soaking</subject><subject>X-ray diffraction</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbFOHDEURS0UFDYkBT8QuYkExcDzjO0Zl7DsJkiEpCD1yGM_I5NdG2yPgL9nNgtUSKnevdLRKd4l5IDBMYOanQxeAKuFSDtkxkQNFVdKfCAzAJBVrSTskU85306VQ8s_kr1aSA5MNTNS5jEYTAUt_RmLjyHTKywPMf314Yb-jgkz1cHSc5-LDoUuMaX46K3OSOcYCqZMF0EPK6Rn2kzVRzchvvhAl2MwG-U_wUWawnXSznnzmew6vcr45eXukz_LxfX8R3X56_vF_PSy0pyrUllntFADWLACtO6sbbCBrgWlOuNgkKyTrm6ZsKgGxlEDaNEK2SAz0gnV7JPDrfcuxfsRc-nXPhtcrXTAOOaedY2UvG2l_D8qJUihBN-gR1vUpJhzQtffJb_W6aln0G_26N_2mNivL9pxWKN9I18HmIBvW0Cb3N_GMYXpIe-IngGw65JL</recordid><startdate>20150303</startdate><enddate>20150303</enddate><creator>Yao, Huili</creator><creator>Rui, Huan</creator><creator>Kumar, Ritesh</creator><creator>Eshelman, Kate</creator><creator>Lovell, Scott</creator><creator>Battaile, Kevin P</creator><creator>Im, Wonpil</creator><creator>Rivera, Mario</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20150303</creationdate><title>Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic</title><author>Yao, Huili ; Rui, Huan ; Kumar, Ritesh ; Eshelman, Kate ; Lovell, Scott ; Battaile, Kevin P ; Im, Wonpil ; Rivera, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a449t-dfca59b0d0d50aa8dd3e30870998cf0b6186f2715de9b14ea00a57563e1c6f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Substitution</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>binding sites</topic><topic>Catalytic Domain</topic><topic>Ceruloplasmin - chemistry</topic><topic>Ceruloplasmin - genetics</topic><topic>Ceruloplasmin - metabolism</topic><topic>crystallization</topic><topic>Crystallography, X-Ray</topic><topic>crystals</topic><topic>Cytochrome b Group - chemistry</topic><topic>Cytochrome b Group - genetics</topic><topic>Cytochrome b Group - metabolism</topic><topic>Ferritins - chemistry</topic><topic>Ferritins - genetics</topic><topic>Ferritins - metabolism</topic><topic>ferroxidase</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>hydrophobic bonding</topic><topic>ions</topic><topic>Iron</topic><topic>iron phosphates</topic><topic>ligands</topic><topic>Models, Molecular</topic><topic>molecular dynamics</topic><topic>mutants</topic><topic>Mutation, Missense</topic><topic>oxidation</topic><topic>Oxidation-Reduction</topic><topic>Protein Folding</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - chemistry</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>soaking</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Huili</creatorcontrib><creatorcontrib>Rui, Huan</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Eshelman, Kate</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Battaile, Kevin P</creatorcontrib><creatorcontrib>Im, Wonpil</creatorcontrib><creatorcontrib>Rivera, Mario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Huili</au><au>Rui, Huan</au><au>Kumar, Ritesh</au><au>Eshelman, Kate</au><au>Lovell, Scott</au><au>Battaile, Kevin P</au><au>Im, Wonpil</au><au>Rivera, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2015-03-03</date><risdate>2015</risdate><volume>54</volume><issue>8</issue><spage>1611</spage><epage>1627</epage><pages>1611-1627</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25640193</pmid><doi>10.1021/bi501255r</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2015-03, Vol.54 (8), p.1611-1627 |
issn | 0006-2960 1520-4995 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660659546 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Substitution Bacterial Outer Membrane Proteins - chemistry Bacterial Outer Membrane Proteins - genetics Bacterial Outer Membrane Proteins - metabolism Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism binding sites Catalytic Domain Ceruloplasmin - chemistry Ceruloplasmin - genetics Ceruloplasmin - metabolism crystallization Crystallography, X-Ray crystals Cytochrome b Group - chemistry Cytochrome b Group - genetics Cytochrome b Group - metabolism Ferritins - chemistry Ferritins - genetics Ferritins - metabolism ferroxidase Hydrophobic and Hydrophilic Interactions hydrophobic bonding ions Iron iron phosphates ligands Models, Molecular molecular dynamics mutants Mutation, Missense oxidation Oxidation-Reduction Protein Folding Pseudomonas aeruginosa Pseudomonas aeruginosa - chemistry Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - metabolism soaking X-ray diffraction |
title | Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concerted%20Motions%20Networking%20Pores%20and%20Distant%20Ferroxidase%20Centers%20Enable%20Bacterioferritin%20Function%20and%20Iron%20Traffic&rft.jtitle=Biochemistry%20(Easton)&rft.au=Yao,%20Huili&rft.date=2015-03-03&rft.volume=54&rft.issue=8&rft.spage=1611&rft.epage=1627&rft.pages=1611-1627&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi501255r&rft_dat=%3Cproquest_cross%3E1660659546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660659546&rft_id=info:pmid/25640193&rfr_iscdi=true |