Thermodynamic and kinetic folding of riboswitches
Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited...
Gespeichert in:
Veröffentlicht in: | Methods in enzymology 2015, Vol.553, p.193-213 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | |
container_start_page | 193 |
container_title | Methods in enzymology |
container_volume | 553 |
creator | Badelt, Stefan Hammer, Stefan Flamm, Christoph Hofacker, Ivo L |
description | Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited for computational analysis using the toolbox of RNA structure prediction methods. By their very definition riboswitch function depends on structural change. Methods that consider only the thermodynamic equilibrium of an RNA are therefore of limited use. Instead, one needs to employ computationally more expensive methods that consider the energy landscape and the folding dynamics on that landscape. Moreover, for the important class of kinetic riboswitches, the mechanism of riboswitch function can only be understood in the context of co-transcriptional folding. We present a computational approach to simulate the dynamic behavior of riboswitches during co-transcriptional folding in the presence and absence of a ligand. Our investigations show that the abstraction level of RNA secondary structure in combination with a dynamic folding landscape approach is expressive enough to understand how riboswitches perform their function. We apply our approach to a experimentally validated theophylline-binding riboswitch. |
doi_str_mv | 10.1016/bs.mie.2014.10.060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660438014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660438014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c44be3257a1ce7d4d1910f4cee0ed36f77ced03a5f51015a79618538d8df84963</originalsourceid><addsrcrecordid>eNo1j01LxDAYhIMg7rr6BzxIj15a8zafPcriFyx4Wc8lTd640aZdmy6y_96A62mGYZjhIeQGaAUU5H2XqhiwqinwHFRU0jOyBCFUqRqtF-QypU9Ka6UbuCCLWqhacimXBLY7nOLojoOJwRZmcMVXGHDO3o-9C8NHMfpiCt2YfsJsd5iuyLk3fcLrk67I-9Pjdv1Sbt6eX9cPm9IyRufSct4hy0cGLCrHHTRAPbeIFB2TXimLjjIjvMgAwqhGghZMO-285o1kK3L3t7ufxu8DprmNIVnsezPgeEgtSEk50xk4V29P1UMX0bX7KUQzHdt_TPYLz69S6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660438014</pqid></control><display><type>article</type><title>Thermodynamic and kinetic folding of riboswitches</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Badelt, Stefan ; Hammer, Stefan ; Flamm, Christoph ; Hofacker, Ivo L</creator><creatorcontrib>Badelt, Stefan ; Hammer, Stefan ; Flamm, Christoph ; Hofacker, Ivo L</creatorcontrib><description>Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited for computational analysis using the toolbox of RNA structure prediction methods. By their very definition riboswitch function depends on structural change. Methods that consider only the thermodynamic equilibrium of an RNA are therefore of limited use. Instead, one needs to employ computationally more expensive methods that consider the energy landscape and the folding dynamics on that landscape. Moreover, for the important class of kinetic riboswitches, the mechanism of riboswitch function can only be understood in the context of co-transcriptional folding. We present a computational approach to simulate the dynamic behavior of riboswitches during co-transcriptional folding in the presence and absence of a ligand. Our investigations show that the abstraction level of RNA secondary structure in combination with a dynamic folding landscape approach is expressive enough to understand how riboswitches perform their function. We apply our approach to a experimentally validated theophylline-binding riboswitch.</description><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/bs.mie.2014.10.060</identifier><identifier>PMID: 25726466</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Base Sequence ; Computational Biology - methods ; Kinetics ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; Riboswitch ; RNA Folding ; Temperature ; Thermodynamics</subject><ispartof>Methods in enzymology, 2015, Vol.553, p.193-213</ispartof><rights>2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c44be3257a1ce7d4d1910f4cee0ed36f77ced03a5f51015a79618538d8df84963</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25726466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Badelt, Stefan</creatorcontrib><creatorcontrib>Hammer, Stefan</creatorcontrib><creatorcontrib>Flamm, Christoph</creatorcontrib><creatorcontrib>Hofacker, Ivo L</creatorcontrib><title>Thermodynamic and kinetic folding of riboswitches</title><title>Methods in enzymology</title><addtitle>Methods Enzymol</addtitle><description>Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited for computational analysis using the toolbox of RNA structure prediction methods. By their very definition riboswitch function depends on structural change. Methods that consider only the thermodynamic equilibrium of an RNA are therefore of limited use. Instead, one needs to employ computationally more expensive methods that consider the energy landscape and the folding dynamics on that landscape. Moreover, for the important class of kinetic riboswitches, the mechanism of riboswitch function can only be understood in the context of co-transcriptional folding. We present a computational approach to simulate the dynamic behavior of riboswitches during co-transcriptional folding in the presence and absence of a ligand. Our investigations show that the abstraction level of RNA secondary structure in combination with a dynamic folding landscape approach is expressive enough to understand how riboswitches perform their function. We apply our approach to a experimentally validated theophylline-binding riboswitch.</description><subject>Algorithms</subject><subject>Base Sequence</subject><subject>Computational Biology - methods</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Riboswitch</subject><subject>RNA Folding</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>1557-7988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1j01LxDAYhIMg7rr6BzxIj15a8zafPcriFyx4Wc8lTd640aZdmy6y_96A62mGYZjhIeQGaAUU5H2XqhiwqinwHFRU0jOyBCFUqRqtF-QypU9Ka6UbuCCLWqhacimXBLY7nOLojoOJwRZmcMVXGHDO3o-9C8NHMfpiCt2YfsJsd5iuyLk3fcLrk67I-9Pjdv1Sbt6eX9cPm9IyRufSct4hy0cGLCrHHTRAPbeIFB2TXimLjjIjvMgAwqhGghZMO-285o1kK3L3t7ufxu8DprmNIVnsezPgeEgtSEk50xk4V29P1UMX0bX7KUQzHdt_TPYLz69S6Q</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Badelt, Stefan</creator><creator>Hammer, Stefan</creator><creator>Flamm, Christoph</creator><creator>Hofacker, Ivo L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2015</creationdate><title>Thermodynamic and kinetic folding of riboswitches</title><author>Badelt, Stefan ; Hammer, Stefan ; Flamm, Christoph ; Hofacker, Ivo L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c44be3257a1ce7d4d1910f4cee0ed36f77ced03a5f51015a79618538d8df84963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Base Sequence</topic><topic>Computational Biology - methods</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Riboswitch</topic><topic>RNA Folding</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badelt, Stefan</creatorcontrib><creatorcontrib>Hammer, Stefan</creatorcontrib><creatorcontrib>Flamm, Christoph</creatorcontrib><creatorcontrib>Hofacker, Ivo L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Methods in enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badelt, Stefan</au><au>Hammer, Stefan</au><au>Flamm, Christoph</au><au>Hofacker, Ivo L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic and kinetic folding of riboswitches</atitle><jtitle>Methods in enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>2015</date><risdate>2015</risdate><volume>553</volume><spage>193</spage><epage>213</epage><pages>193-213</pages><eissn>1557-7988</eissn><abstract>Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited for computational analysis using the toolbox of RNA structure prediction methods. By their very definition riboswitch function depends on structural change. Methods that consider only the thermodynamic equilibrium of an RNA are therefore of limited use. Instead, one needs to employ computationally more expensive methods that consider the energy landscape and the folding dynamics on that landscape. Moreover, for the important class of kinetic riboswitches, the mechanism of riboswitch function can only be understood in the context of co-transcriptional folding. We present a computational approach to simulate the dynamic behavior of riboswitches during co-transcriptional folding in the presence and absence of a ligand. Our investigations show that the abstraction level of RNA secondary structure in combination with a dynamic folding landscape approach is expressive enough to understand how riboswitches perform their function. We apply our approach to a experimentally validated theophylline-binding riboswitch.</abstract><cop>United States</cop><pmid>25726466</pmid><doi>10.1016/bs.mie.2014.10.060</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1557-7988 |
ispartof | Methods in enzymology, 2015, Vol.553, p.193-213 |
issn | 1557-7988 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660438014 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Base Sequence Computational Biology - methods Kinetics Ligands Molecular Sequence Data Nucleic Acid Conformation Riboswitch RNA Folding Temperature Thermodynamics |
title | Thermodynamic and kinetic folding of riboswitches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20and%20kinetic%20folding%20of%20riboswitches&rft.jtitle=Methods%20in%20enzymology&rft.au=Badelt,%20Stefan&rft.date=2015&rft.volume=553&rft.spage=193&rft.epage=213&rft.pages=193-213&rft.eissn=1557-7988&rft_id=info:doi/10.1016/bs.mie.2014.10.060&rft_dat=%3Cproquest_pubme%3E1660438014%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660438014&rft_id=info:pmid/25726466&rfr_iscdi=true |