Thermodynamic and kinetic folding of riboswitches

Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in enzymology 2015, Vol.553, p.193-213
Hauptverfasser: Badelt, Stefan, Hammer, Stefan, Flamm, Christoph, Hofacker, Ivo L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue
container_start_page 193
container_title Methods in enzymology
container_volume 553
creator Badelt, Stefan
Hammer, Stefan
Flamm, Christoph
Hofacker, Ivo L
description Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited for computational analysis using the toolbox of RNA structure prediction methods. By their very definition riboswitch function depends on structural change. Methods that consider only the thermodynamic equilibrium of an RNA are therefore of limited use. Instead, one needs to employ computationally more expensive methods that consider the energy landscape and the folding dynamics on that landscape. Moreover, for the important class of kinetic riboswitches, the mechanism of riboswitch function can only be understood in the context of co-transcriptional folding. We present a computational approach to simulate the dynamic behavior of riboswitches during co-transcriptional folding in the presence and absence of a ligand. Our investigations show that the abstraction level of RNA secondary structure in combination with a dynamic folding landscape approach is expressive enough to understand how riboswitches perform their function. We apply our approach to a experimentally validated theophylline-binding riboswitch.
doi_str_mv 10.1016/bs.mie.2014.10.060
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660438014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660438014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c44be3257a1ce7d4d1910f4cee0ed36f77ced03a5f51015a79618538d8df84963</originalsourceid><addsrcrecordid>eNo1j01LxDAYhIMg7rr6BzxIj15a8zafPcriFyx4Wc8lTd640aZdmy6y_96A62mGYZjhIeQGaAUU5H2XqhiwqinwHFRU0jOyBCFUqRqtF-QypU9Ka6UbuCCLWqhacimXBLY7nOLojoOJwRZmcMVXGHDO3o-9C8NHMfpiCt2YfsJsd5iuyLk3fcLrk67I-9Pjdv1Sbt6eX9cPm9IyRufSct4hy0cGLCrHHTRAPbeIFB2TXimLjjIjvMgAwqhGghZMO-285o1kK3L3t7ufxu8DprmNIVnsezPgeEgtSEk50xk4V29P1UMX0bX7KUQzHdt_TPYLz69S6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660438014</pqid></control><display><type>article</type><title>Thermodynamic and kinetic folding of riboswitches</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Badelt, Stefan ; Hammer, Stefan ; Flamm, Christoph ; Hofacker, Ivo L</creator><creatorcontrib>Badelt, Stefan ; Hammer, Stefan ; Flamm, Christoph ; Hofacker, Ivo L</creatorcontrib><description>Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited for computational analysis using the toolbox of RNA structure prediction methods. By their very definition riboswitch function depends on structural change. Methods that consider only the thermodynamic equilibrium of an RNA are therefore of limited use. Instead, one needs to employ computationally more expensive methods that consider the energy landscape and the folding dynamics on that landscape. Moreover, for the important class of kinetic riboswitches, the mechanism of riboswitch function can only be understood in the context of co-transcriptional folding. We present a computational approach to simulate the dynamic behavior of riboswitches during co-transcriptional folding in the presence and absence of a ligand. Our investigations show that the abstraction level of RNA secondary structure in combination with a dynamic folding landscape approach is expressive enough to understand how riboswitches perform their function. We apply our approach to a experimentally validated theophylline-binding riboswitch.</description><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/bs.mie.2014.10.060</identifier><identifier>PMID: 25726466</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Base Sequence ; Computational Biology - methods ; Kinetics ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; Riboswitch ; RNA Folding ; Temperature ; Thermodynamics</subject><ispartof>Methods in enzymology, 2015, Vol.553, p.193-213</ispartof><rights>2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c44be3257a1ce7d4d1910f4cee0ed36f77ced03a5f51015a79618538d8df84963</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25726466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Badelt, Stefan</creatorcontrib><creatorcontrib>Hammer, Stefan</creatorcontrib><creatorcontrib>Flamm, Christoph</creatorcontrib><creatorcontrib>Hofacker, Ivo L</creatorcontrib><title>Thermodynamic and kinetic folding of riboswitches</title><title>Methods in enzymology</title><addtitle>Methods Enzymol</addtitle><description>Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited for computational analysis using the toolbox of RNA structure prediction methods. By their very definition riboswitch function depends on structural change. Methods that consider only the thermodynamic equilibrium of an RNA are therefore of limited use. Instead, one needs to employ computationally more expensive methods that consider the energy landscape and the folding dynamics on that landscape. Moreover, for the important class of kinetic riboswitches, the mechanism of riboswitch function can only be understood in the context of co-transcriptional folding. We present a computational approach to simulate the dynamic behavior of riboswitches during co-transcriptional folding in the presence and absence of a ligand. Our investigations show that the abstraction level of RNA secondary structure in combination with a dynamic folding landscape approach is expressive enough to understand how riboswitches perform their function. We apply our approach to a experimentally validated theophylline-binding riboswitch.</description><subject>Algorithms</subject><subject>Base Sequence</subject><subject>Computational Biology - methods</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Riboswitch</subject><subject>RNA Folding</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>1557-7988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1j01LxDAYhIMg7rr6BzxIj15a8zafPcriFyx4Wc8lTd640aZdmy6y_96A62mGYZjhIeQGaAUU5H2XqhiwqinwHFRU0jOyBCFUqRqtF-QypU9Ka6UbuCCLWqhacimXBLY7nOLojoOJwRZmcMVXGHDO3o-9C8NHMfpiCt2YfsJsd5iuyLk3fcLrk67I-9Pjdv1Sbt6eX9cPm9IyRufSct4hy0cGLCrHHTRAPbeIFB2TXimLjjIjvMgAwqhGghZMO-285o1kK3L3t7ufxu8DprmNIVnsezPgeEgtSEk50xk4V29P1UMX0bX7KUQzHdt_TPYLz69S6Q</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Badelt, Stefan</creator><creator>Hammer, Stefan</creator><creator>Flamm, Christoph</creator><creator>Hofacker, Ivo L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2015</creationdate><title>Thermodynamic and kinetic folding of riboswitches</title><author>Badelt, Stefan ; Hammer, Stefan ; Flamm, Christoph ; Hofacker, Ivo L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c44be3257a1ce7d4d1910f4cee0ed36f77ced03a5f51015a79618538d8df84963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Base Sequence</topic><topic>Computational Biology - methods</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Riboswitch</topic><topic>RNA Folding</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badelt, Stefan</creatorcontrib><creatorcontrib>Hammer, Stefan</creatorcontrib><creatorcontrib>Flamm, Christoph</creatorcontrib><creatorcontrib>Hofacker, Ivo L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Methods in enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badelt, Stefan</au><au>Hammer, Stefan</au><au>Flamm, Christoph</au><au>Hofacker, Ivo L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic and kinetic folding of riboswitches</atitle><jtitle>Methods in enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>2015</date><risdate>2015</risdate><volume>553</volume><spage>193</spage><epage>213</epage><pages>193-213</pages><eissn>1557-7988</eissn><abstract>Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited for computational analysis using the toolbox of RNA structure prediction methods. By their very definition riboswitch function depends on structural change. Methods that consider only the thermodynamic equilibrium of an RNA are therefore of limited use. Instead, one needs to employ computationally more expensive methods that consider the energy landscape and the folding dynamics on that landscape. Moreover, for the important class of kinetic riboswitches, the mechanism of riboswitch function can only be understood in the context of co-transcriptional folding. We present a computational approach to simulate the dynamic behavior of riboswitches during co-transcriptional folding in the presence and absence of a ligand. Our investigations show that the abstraction level of RNA secondary structure in combination with a dynamic folding landscape approach is expressive enough to understand how riboswitches perform their function. We apply our approach to a experimentally validated theophylline-binding riboswitch.</abstract><cop>United States</cop><pmid>25726466</pmid><doi>10.1016/bs.mie.2014.10.060</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1557-7988
ispartof Methods in enzymology, 2015, Vol.553, p.193-213
issn 1557-7988
language eng
recordid cdi_proquest_miscellaneous_1660438014
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Base Sequence
Computational Biology - methods
Kinetics
Ligands
Molecular Sequence Data
Nucleic Acid Conformation
Riboswitch
RNA Folding
Temperature
Thermodynamics
title Thermodynamic and kinetic folding of riboswitches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20and%20kinetic%20folding%20of%20riboswitches&rft.jtitle=Methods%20in%20enzymology&rft.au=Badelt,%20Stefan&rft.date=2015&rft.volume=553&rft.spage=193&rft.epage=213&rft.pages=193-213&rft.eissn=1557-7988&rft_id=info:doi/10.1016/bs.mie.2014.10.060&rft_dat=%3Cproquest_pubme%3E1660438014%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660438014&rft_id=info:pmid/25726466&rfr_iscdi=true