Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer's disease
Cognitive impairment is an important predictor of functional outcome in patients with schizophrenia, yet its neurobiology is still incompletely understood. Neuropathological evidence of impaired synaptic connectivity and NMDA receptor-dependent transmission in superior temporal cortex motivated us t...
Gespeichert in:
Veröffentlicht in: | International journal of psychophysiology 2015-02, Vol.95 (2), p.145-155 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 2 |
container_start_page | 145 |
container_title | International journal of psychophysiology |
container_volume | 95 |
creator | Baldeweg, Torsten Hirsch, Steven R. |
description | Cognitive impairment is an important predictor of functional outcome in patients with schizophrenia, yet its neurobiology is still incompletely understood. Neuropathological evidence of impaired synaptic connectivity and NMDA receptor-dependent transmission in superior temporal cortex motivated us to explore the correlation of in vivo mismatch negativity (MMN) with cognitive status in patients with schizophrenia. MMN elicited in a roving stimulus paradigm displayed a response proportional to the number of stimulus repetitions (memory trace effect). Preliminary evidence in patients with chronic schizophrenia suggests that attenuation of this MMN memory trace effect was correlated with the degree of neuropsychological memory dysfunction. Here we present data from a larger confirmatory study in patients with schizophrenia, bipolar disorder, probable Alzheimer's disease and healthy controls. We observed that the diminution of the MMN memory trace effect and its correlation with memory impairment was only found in the schizophrenia group. Recent pharmacological studies using the roving paradigm suggest that attenuation of the MMN trace effect can be understood as abnormal modulation of NMDA receptor-dependent plasticity. We suggest that the convergence of the previously identified synaptic pathology in supragranular cortical layers with the intracortical locus of MMN generation accounts for the remarkable robustness of MMN impairments in schizophrenia. We further speculate that this layer-specific synaptic pathology identified in supragranular neurons plays a pivotal computational role, by weakening the encoding and propagation of prediction errors to higher cortical modules. According to predictive coding theory such breakdown will have grave implications not only for perception, but also for higher-order cognition and may thus account for the MMN–cognition correlations observed here. Finally, MMN is a sensitive and specific biomarker for detecting the early prodromal phase of schizophrenia and is well suited for the exploration of novel cognition-enhancing agents in humans.
•Comparison of MMN in schizophrenia with bipolar disorder and Alzheimer's disease•First study to show specificity of MMN indexing cognitive status in schizophrenia•Convergence of synaptic pathology with intracortical locus of MMN generation•Supragranular error-units in hierarchical systems account for cognitive phenotype. |
doi_str_mv | 10.1016/j.ijpsycho.2014.03.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660420852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167876014000774</els_id><sourcerecordid>1660420852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-5943e17cfeac00afa8b092e548ea9effa1ac00113b1ff1dae715ab6f72cf6c473</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EokvhFSrf4JJgJ1k74cSq4p9UxAXOluOMyaycOHiyLdtn4WHxaluunDya-X4ejT7GrqQopZDq7b7E_UJHN8ayErIpRV0K0T5hG9nqqtCq00_ZJoO6aLUSF-wF0V4IoWXXPWcXVaNaWTV6w_58RZrs6kY-w0-74i2uR47zAL-BOIYwA1FBCzj06DhOi8U0wbwSj567mFZ0NvAlWMrVOcvJjXgflzHBjPYd32Uu5xJSnPkdriPvcYnBJj7kVhogcTsPfBfuR8AJ0ms6DcASvGTPvA0Erx7eS_bj44fv15-Lm2-fvlzvbgrXtGottl1Tg9TOg3VCWG_bXnQVbJsWbAfeW3nqS1n30ns5WNBya3vldeW8co2uL9mb879Lir8OQKuZkByEYGeIBzJSKdFUot1WGVVn1KVIlMCbJeFk09FIYU5mzN48mjEnM0bUJpvJwauHHYd-guFf7FFFBt6fAciX3iIkQw5hdjBgAreaIeL_dvwFb5Ko8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660420852</pqid></control><display><type>article</type><title>Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer's disease</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Baldeweg, Torsten ; Hirsch, Steven R.</creator><creatorcontrib>Baldeweg, Torsten ; Hirsch, Steven R.</creatorcontrib><description>Cognitive impairment is an important predictor of functional outcome in patients with schizophrenia, yet its neurobiology is still incompletely understood. Neuropathological evidence of impaired synaptic connectivity and NMDA receptor-dependent transmission in superior temporal cortex motivated us to explore the correlation of in vivo mismatch negativity (MMN) with cognitive status in patients with schizophrenia. MMN elicited in a roving stimulus paradigm displayed a response proportional to the number of stimulus repetitions (memory trace effect). Preliminary evidence in patients with chronic schizophrenia suggests that attenuation of this MMN memory trace effect was correlated with the degree of neuropsychological memory dysfunction. Here we present data from a larger confirmatory study in patients with schizophrenia, bipolar disorder, probable Alzheimer's disease and healthy controls. We observed that the diminution of the MMN memory trace effect and its correlation with memory impairment was only found in the schizophrenia group. Recent pharmacological studies using the roving paradigm suggest that attenuation of the MMN trace effect can be understood as abnormal modulation of NMDA receptor-dependent plasticity. We suggest that the convergence of the previously identified synaptic pathology in supragranular cortical layers with the intracortical locus of MMN generation accounts for the remarkable robustness of MMN impairments in schizophrenia. We further speculate that this layer-specific synaptic pathology identified in supragranular neurons plays a pivotal computational role, by weakening the encoding and propagation of prediction errors to higher cortical modules. According to predictive coding theory such breakdown will have grave implications not only for perception, but also for higher-order cognition and may thus account for the MMN–cognition correlations observed here. Finally, MMN is a sensitive and specific biomarker for detecting the early prodromal phase of schizophrenia and is well suited for the exploration of novel cognition-enhancing agents in humans.
•Comparison of MMN in schizophrenia with bipolar disorder and Alzheimer's disease•First study to show specificity of MMN indexing cognitive status in schizophrenia•Convergence of synaptic pathology with intracortical locus of MMN generation•Supragranular error-units in hierarchical systems account for cognitive phenotype.</description><identifier>ISSN: 0167-8760</identifier><identifier>EISSN: 1872-7697</identifier><identifier>DOI: 10.1016/j.ijpsycho.2014.03.008</identifier><identifier>PMID: 24681247</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acoustic Stimulation ; Adult ; Aged ; Aged, 80 and over ; Alzheimer Disease - complications ; Alzheimer Disease - pathology ; Analysis of Variance ; Bipolar Disorder - complications ; Bipolar Disorder - pathology ; Bipolar illness ; Cerebral Cortex - physiopathology ; Cognition ; Cognition Disorders - etiology ; Contingent Negative Variation - physiology ; Electroencephalography ; Evoked Potentials, Auditory - physiology ; Humans ; Memory, Short-Term - physiology ; Middle Aged ; Mismatch negativity ; Neuronal Plasticity - physiology ; Neuropsychological Tests ; Plasticity ; Psychiatric Status Rating Scales ; Schizophrenia</subject><ispartof>International journal of psychophysiology, 2015-02, Vol.95 (2), p.145-155</ispartof><rights>2014</rights><rights>Copyright © 2014. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-5943e17cfeac00afa8b092e548ea9effa1ac00113b1ff1dae715ab6f72cf6c473</citedby><cites>FETCH-LOGICAL-c486t-5943e17cfeac00afa8b092e548ea9effa1ac00113b1ff1dae715ab6f72cf6c473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpsycho.2014.03.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24681247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldeweg, Torsten</creatorcontrib><creatorcontrib>Hirsch, Steven R.</creatorcontrib><title>Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer's disease</title><title>International journal of psychophysiology</title><addtitle>Int J Psychophysiol</addtitle><description>Cognitive impairment is an important predictor of functional outcome in patients with schizophrenia, yet its neurobiology is still incompletely understood. Neuropathological evidence of impaired synaptic connectivity and NMDA receptor-dependent transmission in superior temporal cortex motivated us to explore the correlation of in vivo mismatch negativity (MMN) with cognitive status in patients with schizophrenia. MMN elicited in a roving stimulus paradigm displayed a response proportional to the number of stimulus repetitions (memory trace effect). Preliminary evidence in patients with chronic schizophrenia suggests that attenuation of this MMN memory trace effect was correlated with the degree of neuropsychological memory dysfunction. Here we present data from a larger confirmatory study in patients with schizophrenia, bipolar disorder, probable Alzheimer's disease and healthy controls. We observed that the diminution of the MMN memory trace effect and its correlation with memory impairment was only found in the schizophrenia group. Recent pharmacological studies using the roving paradigm suggest that attenuation of the MMN trace effect can be understood as abnormal modulation of NMDA receptor-dependent plasticity. We suggest that the convergence of the previously identified synaptic pathology in supragranular cortical layers with the intracortical locus of MMN generation accounts for the remarkable robustness of MMN impairments in schizophrenia. We further speculate that this layer-specific synaptic pathology identified in supragranular neurons plays a pivotal computational role, by weakening the encoding and propagation of prediction errors to higher cortical modules. According to predictive coding theory such breakdown will have grave implications not only for perception, but also for higher-order cognition and may thus account for the MMN–cognition correlations observed here. Finally, MMN is a sensitive and specific biomarker for detecting the early prodromal phase of schizophrenia and is well suited for the exploration of novel cognition-enhancing agents in humans.
•Comparison of MMN in schizophrenia with bipolar disorder and Alzheimer's disease•First study to show specificity of MMN indexing cognitive status in schizophrenia•Convergence of synaptic pathology with intracortical locus of MMN generation•Supragranular error-units in hierarchical systems account for cognitive phenotype.</description><subject>Acoustic Stimulation</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - complications</subject><subject>Alzheimer Disease - pathology</subject><subject>Analysis of Variance</subject><subject>Bipolar Disorder - complications</subject><subject>Bipolar Disorder - pathology</subject><subject>Bipolar illness</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Cognition</subject><subject>Cognition Disorders - etiology</subject><subject>Contingent Negative Variation - physiology</subject><subject>Electroencephalography</subject><subject>Evoked Potentials, Auditory - physiology</subject><subject>Humans</subject><subject>Memory, Short-Term - physiology</subject><subject>Middle Aged</subject><subject>Mismatch negativity</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuropsychological Tests</subject><subject>Plasticity</subject><subject>Psychiatric Status Rating Scales</subject><subject>Schizophrenia</subject><issn>0167-8760</issn><issn>1872-7697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQhy0EokvhFSrf4JJgJ1k74cSq4p9UxAXOluOMyaycOHiyLdtn4WHxaluunDya-X4ejT7GrqQopZDq7b7E_UJHN8ayErIpRV0K0T5hG9nqqtCq00_ZJoO6aLUSF-wF0V4IoWXXPWcXVaNaWTV6w_58RZrs6kY-w0-74i2uR47zAL-BOIYwA1FBCzj06DhOi8U0wbwSj567mFZ0NvAlWMrVOcvJjXgflzHBjPYd32Uu5xJSnPkdriPvcYnBJj7kVhogcTsPfBfuR8AJ0ms6DcASvGTPvA0Erx7eS_bj44fv15-Lm2-fvlzvbgrXtGottl1Tg9TOg3VCWG_bXnQVbJsWbAfeW3nqS1n30ns5WNBya3vldeW8co2uL9mb879Lir8OQKuZkByEYGeIBzJSKdFUot1WGVVn1KVIlMCbJeFk09FIYU5mzN48mjEnM0bUJpvJwauHHYd-guFf7FFFBt6fAciX3iIkQw5hdjBgAreaIeL_dvwFb5Ko8g</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Baldeweg, Torsten</creator><creator>Hirsch, Steven R.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150201</creationdate><title>Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer's disease</title><author>Baldeweg, Torsten ; Hirsch, Steven R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-5943e17cfeac00afa8b092e548ea9effa1ac00113b1ff1dae715ab6f72cf6c473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic Stimulation</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - complications</topic><topic>Alzheimer Disease - pathology</topic><topic>Analysis of Variance</topic><topic>Bipolar Disorder - complications</topic><topic>Bipolar Disorder - pathology</topic><topic>Bipolar illness</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Cognition</topic><topic>Cognition Disorders - etiology</topic><topic>Contingent Negative Variation - physiology</topic><topic>Electroencephalography</topic><topic>Evoked Potentials, Auditory - physiology</topic><topic>Humans</topic><topic>Memory, Short-Term - physiology</topic><topic>Middle Aged</topic><topic>Mismatch negativity</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuropsychological Tests</topic><topic>Plasticity</topic><topic>Psychiatric Status Rating Scales</topic><topic>Schizophrenia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldeweg, Torsten</creatorcontrib><creatorcontrib>Hirsch, Steven R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of psychophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldeweg, Torsten</au><au>Hirsch, Steven R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer's disease</atitle><jtitle>International journal of psychophysiology</jtitle><addtitle>Int J Psychophysiol</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>95</volume><issue>2</issue><spage>145</spage><epage>155</epage><pages>145-155</pages><issn>0167-8760</issn><eissn>1872-7697</eissn><abstract>Cognitive impairment is an important predictor of functional outcome in patients with schizophrenia, yet its neurobiology is still incompletely understood. Neuropathological evidence of impaired synaptic connectivity and NMDA receptor-dependent transmission in superior temporal cortex motivated us to explore the correlation of in vivo mismatch negativity (MMN) with cognitive status in patients with schizophrenia. MMN elicited in a roving stimulus paradigm displayed a response proportional to the number of stimulus repetitions (memory trace effect). Preliminary evidence in patients with chronic schizophrenia suggests that attenuation of this MMN memory trace effect was correlated with the degree of neuropsychological memory dysfunction. Here we present data from a larger confirmatory study in patients with schizophrenia, bipolar disorder, probable Alzheimer's disease and healthy controls. We observed that the diminution of the MMN memory trace effect and its correlation with memory impairment was only found in the schizophrenia group. Recent pharmacological studies using the roving paradigm suggest that attenuation of the MMN trace effect can be understood as abnormal modulation of NMDA receptor-dependent plasticity. We suggest that the convergence of the previously identified synaptic pathology in supragranular cortical layers with the intracortical locus of MMN generation accounts for the remarkable robustness of MMN impairments in schizophrenia. We further speculate that this layer-specific synaptic pathology identified in supragranular neurons plays a pivotal computational role, by weakening the encoding and propagation of prediction errors to higher cortical modules. According to predictive coding theory such breakdown will have grave implications not only for perception, but also for higher-order cognition and may thus account for the MMN–cognition correlations observed here. Finally, MMN is a sensitive and specific biomarker for detecting the early prodromal phase of schizophrenia and is well suited for the exploration of novel cognition-enhancing agents in humans.
•Comparison of MMN in schizophrenia with bipolar disorder and Alzheimer's disease•First study to show specificity of MMN indexing cognitive status in schizophrenia•Convergence of synaptic pathology with intracortical locus of MMN generation•Supragranular error-units in hierarchical systems account for cognitive phenotype.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24681247</pmid><doi>10.1016/j.ijpsycho.2014.03.008</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8760 |
ispartof | International journal of psychophysiology, 2015-02, Vol.95 (2), p.145-155 |
issn | 0167-8760 1872-7697 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660420852 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Acoustic Stimulation Adult Aged Aged, 80 and over Alzheimer Disease - complications Alzheimer Disease - pathology Analysis of Variance Bipolar Disorder - complications Bipolar Disorder - pathology Bipolar illness Cerebral Cortex - physiopathology Cognition Cognition Disorders - etiology Contingent Negative Variation - physiology Electroencephalography Evoked Potentials, Auditory - physiology Humans Memory, Short-Term - physiology Middle Aged Mismatch negativity Neuronal Plasticity - physiology Neuropsychological Tests Plasticity Psychiatric Status Rating Scales Schizophrenia |
title | Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mismatch%20negativity%20indexes%20illness-specific%20impairments%20of%20cortical%20plasticity%20in%20schizophrenia:%20A%20comparison%20with%20bipolar%20disorder%20and%20Alzheimer's%20disease&rft.jtitle=International%20journal%20of%20psychophysiology&rft.au=Baldeweg,%20Torsten&rft.date=2015-02-01&rft.volume=95&rft.issue=2&rft.spage=145&rft.epage=155&rft.pages=145-155&rft.issn=0167-8760&rft.eissn=1872-7697&rft_id=info:doi/10.1016/j.ijpsycho.2014.03.008&rft_dat=%3Cproquest_cross%3E1660420852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660420852&rft_id=info:pmid/24681247&rft_els_id=S0167876014000774&rfr_iscdi=true |