Shared Synaptic Pathophysiology in Syndromic and Nonsyndromic Rodent Models of Autism

The genetic heterogeneity of autism poses a major challenge for identifying mechanism-based treatments. A number of rare mutations are associated with autism, and it is unclear whether these result in common neuronal alterations. Monogenic syndromes, such as fragile X, include autism as one of their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2012-10, Vol.338 (6103), p.128-132
Hauptverfasser: Baudouin, Stéphane J., Gaudias, Julien, Gerharz, Stefan, Hatstatt, Laetitia, Zhou, Kuikui, Punnakkal, Pradeep, Tanaka, Kenji F., Spooren, Will, Hen, Rene, De Zeeuw, Chris I., Vogt, Kaspar, Scheiffele, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 6103
container_start_page 128
container_title Science (American Association for the Advancement of Science)
container_volume 338
creator Baudouin, Stéphane J.
Gaudias, Julien
Gerharz, Stefan
Hatstatt, Laetitia
Zhou, Kuikui
Punnakkal, Pradeep
Tanaka, Kenji F.
Spooren, Will
Hen, Rene
De Zeeuw, Chris I.
Vogt, Kaspar
Scheiffele, Peter
description The genetic heterogeneity of autism poses a major challenge for identifying mechanism-based treatments. A number of rare mutations are associated with autism, and it is unclear whether these result in common neuronal alterations. Monogenic syndromes, such as fragile X, include autism as one of their multifaceted symptoms and have revealed specific defects in synaptic plasticity. We discovered an unexpected convergence of synaptic pathophysiology in a nonsyndromic form of autism with those in fragile X syndrome. Neuroligin-3 knockout mice (a model for nonsyndromic autism) exhibited disrupted heterosynaptic competition and perturbed metabotropic glutamate receptor—dependent synaptic plasticity, a hallmark of fragile X. These phenotypes could be rescued by reexpression of neuroligin-3 in juvenile mice, highlighting the possibility of reverting neuronal circuit alterations in autism after the completion of development.
doi_str_mv 10.1126/science.1224159
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660419484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41704048</jstor_id><sourcerecordid>41704048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-a5baf9638ab3ebdca9d91cba81ef89d363b2aa757b4644ee103e44453e0b71903</originalsourceid><addsrcrecordid>eNqF0c1r2zAYBnAxVpa023mnDsMo9OJW35aOIaztoB9jXc7mtSw3DraUSvYh_30V4mWwS08v6PnpBelB6CvBV4RQeR1Na52xV4RSToT-gOYEa5FritlHNMeYyVzhQszQaYwbjFOm2Sc0o1QrVmA1R6vnNQRbZ887B9uhNdkvGNZ-u97F1nf-ZZe1bp_VwfcpBFdnj97F48FvX1s3ZA9pdDHzTbYYhzb2n9FJA120X6Z5hlY3P_4s7_L7p9ufy8V9bgQphhxEBY2WTEHFbFUb0LUmpgJFbKN0zSSrKEAhiopLzq0lmFnOuWAWVwXRmJ2hy8PebfCvo41D2bfR2K4DZ_0YSyIl5kRzxd-n6W-4kFTrRL__Rzd-DC49JClFOeMC79X1QZngYwy2Kbeh7SHsEir35ZRTOeVUTrrxbdo7Vr2tj_5vGwlcTACiga4J4Ewb_zkpddorkjs_uE0cfDjmnBSYY67YGwoCod8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082434509</pqid></control><display><type>article</type><title>Shared Synaptic Pathophysiology in Syndromic and Nonsyndromic Rodent Models of Autism</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Baudouin, Stéphane J. ; Gaudias, Julien ; Gerharz, Stefan ; Hatstatt, Laetitia ; Zhou, Kuikui ; Punnakkal, Pradeep ; Tanaka, Kenji F. ; Spooren, Will ; Hen, Rene ; De Zeeuw, Chris I. ; Vogt, Kaspar ; Scheiffele, Peter</creator><creatorcontrib>Baudouin, Stéphane J. ; Gaudias, Julien ; Gerharz, Stefan ; Hatstatt, Laetitia ; Zhou, Kuikui ; Punnakkal, Pradeep ; Tanaka, Kenji F. ; Spooren, Will ; Hen, Rene ; De Zeeuw, Chris I. ; Vogt, Kaspar ; Scheiffele, Peter</creatorcontrib><description>The genetic heterogeneity of autism poses a major challenge for identifying mechanism-based treatments. A number of rare mutations are associated with autism, and it is unclear whether these result in common neuronal alterations. Monogenic syndromes, such as fragile X, include autism as one of their multifaceted symptoms and have revealed specific defects in synaptic plasticity. We discovered an unexpected convergence of synaptic pathophysiology in a nonsyndromic form of autism with those in fragile X syndrome. Neuroligin-3 knockout mice (a model for nonsyndromic autism) exhibited disrupted heterosynaptic competition and perturbed metabotropic glutamate receptor—dependent synaptic plasticity, a hallmark of fragile X. These phenotypes could be rescued by reexpression of neuroligin-3 in juvenile mice, highlighting the possibility of reverting neuronal circuit alterations in autism after the completion of development.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1224159</identifier><identifier>PMID: 22983708</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Animals ; Autism ; Autistic disorder ; Autistic Disorder - physiopathology ; Behavioral neuroscience ; Biological and medical sciences ; Cell Adhesion Molecules, Neuronal - genetics ; Cell Adhesion Molecules, Neuronal - metabolism ; Cerebellum ; Chromosome fragility (bloom syndrome, ataxia telangiectasia, fanconi anemia, x-linked mental retardation...) ; Disease Models, Animal ; Fragile X syndrome ; Fragile X Syndrome - genetics ; Fragile X Syndrome - physiopathology ; Fundamental and applied biological sciences. Psychology ; Genetics ; Genotype &amp; phenotype ; Male ; Medical genetics ; Medical sciences ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular biology ; Mutation ; Nerve Net - metabolism ; Nerve Net - physiopathology ; Nerve Net - ultrastructure ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neuronal Plasticity ; Neurons ; Neurotransmitters ; Phenotypes ; Rodents ; Social interaction ; Synapses ; Synapses - metabolism ; Synapses - physiology ; Synapses - ultrastructure ; T tests ; Vertebrates: nervous system and sense organs</subject><ispartof>Science (American Association for the Advancement of Science), 2012-10, Vol.338 (6103), p.128-132</ispartof><rights>Copyright © 2012 American Association for the Advancement of Science</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-a5baf9638ab3ebdca9d91cba81ef89d363b2aa757b4644ee103e44453e0b71903</citedby><cites>FETCH-LOGICAL-c517t-a5baf9638ab3ebdca9d91cba81ef89d363b2aa757b4644ee103e44453e0b71903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41704048$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41704048$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26691265$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22983708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baudouin, Stéphane J.</creatorcontrib><creatorcontrib>Gaudias, Julien</creatorcontrib><creatorcontrib>Gerharz, Stefan</creatorcontrib><creatorcontrib>Hatstatt, Laetitia</creatorcontrib><creatorcontrib>Zhou, Kuikui</creatorcontrib><creatorcontrib>Punnakkal, Pradeep</creatorcontrib><creatorcontrib>Tanaka, Kenji F.</creatorcontrib><creatorcontrib>Spooren, Will</creatorcontrib><creatorcontrib>Hen, Rene</creatorcontrib><creatorcontrib>De Zeeuw, Chris I.</creatorcontrib><creatorcontrib>Vogt, Kaspar</creatorcontrib><creatorcontrib>Scheiffele, Peter</creatorcontrib><title>Shared Synaptic Pathophysiology in Syndromic and Nonsyndromic Rodent Models of Autism</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The genetic heterogeneity of autism poses a major challenge for identifying mechanism-based treatments. A number of rare mutations are associated with autism, and it is unclear whether these result in common neuronal alterations. Monogenic syndromes, such as fragile X, include autism as one of their multifaceted symptoms and have revealed specific defects in synaptic plasticity. We discovered an unexpected convergence of synaptic pathophysiology in a nonsyndromic form of autism with those in fragile X syndrome. Neuroligin-3 knockout mice (a model for nonsyndromic autism) exhibited disrupted heterosynaptic competition and perturbed metabotropic glutamate receptor—dependent synaptic plasticity, a hallmark of fragile X. These phenotypes could be rescued by reexpression of neuroligin-3 in juvenile mice, highlighting the possibility of reverting neuronal circuit alterations in autism after the completion of development.</description><subject>Animals</subject><subject>Autism</subject><subject>Autistic disorder</subject><subject>Autistic Disorder - physiopathology</subject><subject>Behavioral neuroscience</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion Molecules, Neuronal - genetics</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Cerebellum</subject><subject>Chromosome fragility (bloom syndrome, ataxia telangiectasia, fanconi anemia, x-linked mental retardation...)</subject><subject>Disease Models, Animal</subject><subject>Fragile X syndrome</subject><subject>Fragile X Syndrome - genetics</subject><subject>Fragile X Syndrome - physiopathology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Genotype &amp; phenotype</subject><subject>Male</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>Nerve Net - metabolism</subject><subject>Nerve Net - physiopathology</subject><subject>Nerve Net - ultrastructure</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Neurotransmitters</subject><subject>Phenotypes</subject><subject>Rodents</subject><subject>Social interaction</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>T tests</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1r2zAYBnAxVpa023mnDsMo9OJW35aOIaztoB9jXc7mtSw3DraUSvYh_30V4mWwS08v6PnpBelB6CvBV4RQeR1Na52xV4RSToT-gOYEa5FritlHNMeYyVzhQszQaYwbjFOm2Sc0o1QrVmA1R6vnNQRbZ887B9uhNdkvGNZ-u97F1nf-ZZe1bp_VwfcpBFdnj97F48FvX1s3ZA9pdDHzTbYYhzb2n9FJA120X6Z5hlY3P_4s7_L7p9ufy8V9bgQphhxEBY2WTEHFbFUb0LUmpgJFbKN0zSSrKEAhiopLzq0lmFnOuWAWVwXRmJ2hy8PebfCvo41D2bfR2K4DZ_0YSyIl5kRzxd-n6W-4kFTrRL__Rzd-DC49JClFOeMC79X1QZngYwy2Kbeh7SHsEir35ZRTOeVUTrrxbdo7Vr2tj_5vGwlcTACiga4J4Ewb_zkpddorkjs_uE0cfDjmnBSYY67YGwoCod8</recordid><startdate>20121005</startdate><enddate>20121005</enddate><creator>Baudouin, Stéphane J.</creator><creator>Gaudias, Julien</creator><creator>Gerharz, Stefan</creator><creator>Hatstatt, Laetitia</creator><creator>Zhou, Kuikui</creator><creator>Punnakkal, Pradeep</creator><creator>Tanaka, Kenji F.</creator><creator>Spooren, Will</creator><creator>Hen, Rene</creator><creator>De Zeeuw, Chris I.</creator><creator>Vogt, Kaspar</creator><creator>Scheiffele, Peter</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20121005</creationdate><title>Shared Synaptic Pathophysiology in Syndromic and Nonsyndromic Rodent Models of Autism</title><author>Baudouin, Stéphane J. ; Gaudias, Julien ; Gerharz, Stefan ; Hatstatt, Laetitia ; Zhou, Kuikui ; Punnakkal, Pradeep ; Tanaka, Kenji F. ; Spooren, Will ; Hen, Rene ; De Zeeuw, Chris I. ; Vogt, Kaspar ; Scheiffele, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-a5baf9638ab3ebdca9d91cba81ef89d363b2aa757b4644ee103e44453e0b71903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Autism</topic><topic>Autistic disorder</topic><topic>Autistic Disorder - physiopathology</topic><topic>Behavioral neuroscience</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion Molecules, Neuronal - genetics</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Cerebellum</topic><topic>Chromosome fragility (bloom syndrome, ataxia telangiectasia, fanconi anemia, x-linked mental retardation...)</topic><topic>Disease Models, Animal</topic><topic>Fragile X syndrome</topic><topic>Fragile X Syndrome - genetics</topic><topic>Fragile X Syndrome - physiopathology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Genotype &amp; phenotype</topic><topic>Male</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>Nerve Net - metabolism</topic><topic>Nerve Net - physiopathology</topic><topic>Nerve Net - ultrastructure</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Neurotransmitters</topic><topic>Phenotypes</topic><topic>Rodents</topic><topic>Social interaction</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>T tests</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baudouin, Stéphane J.</creatorcontrib><creatorcontrib>Gaudias, Julien</creatorcontrib><creatorcontrib>Gerharz, Stefan</creatorcontrib><creatorcontrib>Hatstatt, Laetitia</creatorcontrib><creatorcontrib>Zhou, Kuikui</creatorcontrib><creatorcontrib>Punnakkal, Pradeep</creatorcontrib><creatorcontrib>Tanaka, Kenji F.</creatorcontrib><creatorcontrib>Spooren, Will</creatorcontrib><creatorcontrib>Hen, Rene</creatorcontrib><creatorcontrib>De Zeeuw, Chris I.</creatorcontrib><creatorcontrib>Vogt, Kaspar</creatorcontrib><creatorcontrib>Scheiffele, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baudouin, Stéphane J.</au><au>Gaudias, Julien</au><au>Gerharz, Stefan</au><au>Hatstatt, Laetitia</au><au>Zhou, Kuikui</au><au>Punnakkal, Pradeep</au><au>Tanaka, Kenji F.</au><au>Spooren, Will</au><au>Hen, Rene</au><au>De Zeeuw, Chris I.</au><au>Vogt, Kaspar</au><au>Scheiffele, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shared Synaptic Pathophysiology in Syndromic and Nonsyndromic Rodent Models of Autism</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2012-10-05</date><risdate>2012</risdate><volume>338</volume><issue>6103</issue><spage>128</spage><epage>132</epage><pages>128-132</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The genetic heterogeneity of autism poses a major challenge for identifying mechanism-based treatments. A number of rare mutations are associated with autism, and it is unclear whether these result in common neuronal alterations. Monogenic syndromes, such as fragile X, include autism as one of their multifaceted symptoms and have revealed specific defects in synaptic plasticity. We discovered an unexpected convergence of synaptic pathophysiology in a nonsyndromic form of autism with those in fragile X syndrome. Neuroligin-3 knockout mice (a model for nonsyndromic autism) exhibited disrupted heterosynaptic competition and perturbed metabotropic glutamate receptor—dependent synaptic plasticity, a hallmark of fragile X. These phenotypes could be rescued by reexpression of neuroligin-3 in juvenile mice, highlighting the possibility of reverting neuronal circuit alterations in autism after the completion of development.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>22983708</pmid><doi>10.1126/science.1224159</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2012-10, Vol.338 (6103), p.128-132
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1660419484
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Animals
Autism
Autistic disorder
Autistic Disorder - physiopathology
Behavioral neuroscience
Biological and medical sciences
Cell Adhesion Molecules, Neuronal - genetics
Cell Adhesion Molecules, Neuronal - metabolism
Cerebellum
Chromosome fragility (bloom syndrome, ataxia telangiectasia, fanconi anemia, x-linked mental retardation...)
Disease Models, Animal
Fragile X syndrome
Fragile X Syndrome - genetics
Fragile X Syndrome - physiopathology
Fundamental and applied biological sciences. Psychology
Genetics
Genotype & phenotype
Male
Medical genetics
Medical sciences
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Molecular biology
Mutation
Nerve Net - metabolism
Nerve Net - physiopathology
Nerve Net - ultrastructure
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neuronal Plasticity
Neurons
Neurotransmitters
Phenotypes
Rodents
Social interaction
Synapses
Synapses - metabolism
Synapses - physiology
Synapses - ultrastructure
T tests
Vertebrates: nervous system and sense organs
title Shared Synaptic Pathophysiology in Syndromic and Nonsyndromic Rodent Models of Autism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shared%20Synaptic%20Pathophysiology%20in%20Syndromic%20and%20Nonsyndromic%20Rodent%20Models%20of%20Autism&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Baudouin,%20St%C3%A9phane%20J.&rft.date=2012-10-05&rft.volume=338&rft.issue=6103&rft.spage=128&rft.epage=132&rft.pages=128-132&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1224159&rft_dat=%3Cjstor_proqu%3E41704048%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082434509&rft_id=info:pmid/22983708&rft_jstor_id=41704048&rfr_iscdi=true