Modeling and predicting the occurrence of brain metastasis from lung cancer by Bayesian network: A case study of Taiwan

Abstract The Bayesian network (BN) is a promising method for modeling cancer metastasis under uncertainty. BN is graphically represented using bioinformatics variables and can be used to support an informative medical decision/observation by using probabilistic reasoning. In this study, we propose s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2014-04, Vol.47, p.147-160
Hauptverfasser: Wang, Kung-Jeng, Makond, Bunjira, Wang, Kung-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue
container_start_page 147
container_title Computers in biology and medicine
container_volume 47
creator Wang, Kung-Jeng
Makond, Bunjira
Wang, Kung-Min
description Abstract The Bayesian network (BN) is a promising method for modeling cancer metastasis under uncertainty. BN is graphically represented using bioinformatics variables and can be used to support an informative medical decision/observation by using probabilistic reasoning. In this study, we propose such a BN to describe and predict the occurrence of brain metastasis from lung cancer. A nationwide database containing more than 50,000 cases of cancer patients from 1996 to 2010 in Taiwan was used in this study. The BN topology for studying brain metastasis from lung cancer was rigorously examined by domain experts/doctors. We used three statistical measures, namely, the accuracy, sensitivity, and specificity, to evaluate the performances of the proposed BN model and to compare it with three competitive approaches, namely, naive Bayes (NB), logistic regression (LR) and support vector machine (SVM). Experimental results show that no significant differences are observed in accuracy or specificity among the four models, while the proposed BN outperforms the others in terms of sampled average sensitivity. Moreover the proposed BN has advantages compared with the other approaches in interpreting how brain metastasis develops from lung cancer. It is shown to be easily understood by physicians, to be efficient in modeling non-linear situations, capable of solving stochastic medical problems, and handling situations wherein information are missing in the context of the occurrence of brain metastasis from lung cancer.
doi_str_mv 10.1016/j.compbiomed.2014.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660416683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S001048251400033X</els_id><sourcerecordid>1660416683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-f629afcf49f277df8599a7f41274f1cabe066e5f7729a66fc93b1e3b09dcd0593</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEokvhLyBLXLgkHTuOHXNAaiugSEUcKBI3y3HG4G0SL3bCav89jrZVpV5AsvyheWZG4_ctCkKhokDF2bayYdx1PozYVwwor4BVAOxJsaGtVCU0NX9abAAolLxlzUnxIqUtAHCo4XlxwrgAKVq2KfZfQo-Dn34SM_VkF7H3dl6f8y8kwdolRpxsvjrSReMnMuJsUl4-ERfDSIYlw9ZkJpLuQC7MAZM3E5lw3od4-46c52hCkualP6xlbozfm-ll8cyZIeGru_O0-P7xw83lVXn99dPny_Pr0nIFc-kEU8ZZx5VjUvaubZQy0nHKJHfUmg5BCGyclJkTwllVdxTrDlRve2hUfVq8PdbdxfB7wTTr0SeLw2AmDEvSVAjgeWvrf6MNKA5KCpnRN4_QbVjilAdZqZY3kvKVao-UjSGliE7voh9NPGgKetVRb_WDjnrVUQPTWcec-vquwdKtsfvEe-EycHEEMH_eH49RJ-tXpXof0c66D_5_urx_VMRmK3hrhlvMMj7MpFNO0N9WP612ojxbqa5_1H8BWOzImg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508457147</pqid></control><display><type>article</type><title>Modeling and predicting the occurrence of brain metastasis from lung cancer by Bayesian network: A case study of Taiwan</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Wang, Kung-Jeng ; Makond, Bunjira ; Wang, Kung-Min</creator><creatorcontrib>Wang, Kung-Jeng ; Makond, Bunjira ; Wang, Kung-Min</creatorcontrib><description>Abstract The Bayesian network (BN) is a promising method for modeling cancer metastasis under uncertainty. BN is graphically represented using bioinformatics variables and can be used to support an informative medical decision/observation by using probabilistic reasoning. In this study, we propose such a BN to describe and predict the occurrence of brain metastasis from lung cancer. A nationwide database containing more than 50,000 cases of cancer patients from 1996 to 2010 in Taiwan was used in this study. The BN topology for studying brain metastasis from lung cancer was rigorously examined by domain experts/doctors. We used three statistical measures, namely, the accuracy, sensitivity, and specificity, to evaluate the performances of the proposed BN model and to compare it with three competitive approaches, namely, naive Bayes (NB), logistic regression (LR) and support vector machine (SVM). Experimental results show that no significant differences are observed in accuracy or specificity among the four models, while the proposed BN outperforms the others in terms of sampled average sensitivity. Moreover the proposed BN has advantages compared with the other approaches in interpreting how brain metastasis develops from lung cancer. It is shown to be easily understood by physicians, to be efficient in modeling non-linear situations, capable of solving stochastic medical problems, and handling situations wherein information are missing in the context of the occurrence of brain metastasis from lung cancer.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2014.02.002</identifier><identifier>PMID: 24607682</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Aged ; Algorithms ; Bayes Theorem ; Bayesian analysis ; Bayesian network ; Brain cancer ; Brain metastasis ; Brain Neoplasms - epidemiology ; Brain Neoplasms - secondary ; Cancer therapies ; Computational Biology - methods ; Female ; Humans ; Internal Medicine ; Lung cancer ; Lung Neoplasms - epidemiology ; Lung Neoplasms - pathology ; Male ; Metastasis ; Middle Aged ; Models, Statistical ; Multivariate analysis ; Other ; Probability ; Probability distribution ; Risk assessment ; Sensitivity and Specificity ; Taiwan - epidemiology</subject><ispartof>Computers in biology and medicine, 2014-04, Vol.47, p.147-160</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-f629afcf49f277df8599a7f41274f1cabe066e5f7729a66fc93b1e3b09dcd0593</citedby><cites>FETCH-LOGICAL-c490t-f629afcf49f277df8599a7f41274f1cabe066e5f7729a66fc93b1e3b09dcd0593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1508457147?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24607682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kung-Jeng</creatorcontrib><creatorcontrib>Makond, Bunjira</creatorcontrib><creatorcontrib>Wang, Kung-Min</creatorcontrib><title>Modeling and predicting the occurrence of brain metastasis from lung cancer by Bayesian network: A case study of Taiwan</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract The Bayesian network (BN) is a promising method for modeling cancer metastasis under uncertainty. BN is graphically represented using bioinformatics variables and can be used to support an informative medical decision/observation by using probabilistic reasoning. In this study, we propose such a BN to describe and predict the occurrence of brain metastasis from lung cancer. A nationwide database containing more than 50,000 cases of cancer patients from 1996 to 2010 in Taiwan was used in this study. The BN topology for studying brain metastasis from lung cancer was rigorously examined by domain experts/doctors. We used three statistical measures, namely, the accuracy, sensitivity, and specificity, to evaluate the performances of the proposed BN model and to compare it with three competitive approaches, namely, naive Bayes (NB), logistic regression (LR) and support vector machine (SVM). Experimental results show that no significant differences are observed in accuracy or specificity among the four models, while the proposed BN outperforms the others in terms of sampled average sensitivity. Moreover the proposed BN has advantages compared with the other approaches in interpreting how brain metastasis develops from lung cancer. It is shown to be easily understood by physicians, to be efficient in modeling non-linear situations, capable of solving stochastic medical problems, and handling situations wherein information are missing in the context of the occurrence of brain metastasis from lung cancer.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Brain cancer</subject><subject>Brain metastasis</subject><subject>Brain Neoplasms - epidemiology</subject><subject>Brain Neoplasms - secondary</subject><subject>Cancer therapies</subject><subject>Computational Biology - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - epidemiology</subject><subject>Lung Neoplasms - pathology</subject><subject>Male</subject><subject>Metastasis</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Multivariate analysis</subject><subject>Other</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Risk assessment</subject><subject>Sensitivity and Specificity</subject><subject>Taiwan - epidemiology</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhiMEokvhLyBLXLgkHTuOHXNAaiugSEUcKBI3y3HG4G0SL3bCav89jrZVpV5AsvyheWZG4_ctCkKhokDF2bayYdx1PozYVwwor4BVAOxJsaGtVCU0NX9abAAolLxlzUnxIqUtAHCo4XlxwrgAKVq2KfZfQo-Dn34SM_VkF7H3dl6f8y8kwdolRpxsvjrSReMnMuJsUl4-ERfDSIYlw9ZkJpLuQC7MAZM3E5lw3od4-46c52hCkualP6xlbozfm-ll8cyZIeGru_O0-P7xw83lVXn99dPny_Pr0nIFc-kEU8ZZx5VjUvaubZQy0nHKJHfUmg5BCGyclJkTwllVdxTrDlRve2hUfVq8PdbdxfB7wTTr0SeLw2AmDEvSVAjgeWvrf6MNKA5KCpnRN4_QbVjilAdZqZY3kvKVao-UjSGliE7voh9NPGgKetVRb_WDjnrVUQPTWcec-vquwdKtsfvEe-EycHEEMH_eH49RJ-tXpXof0c66D_5_urx_VMRmK3hrhlvMMj7MpFNO0N9WP612ojxbqa5_1H8BWOzImg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Wang, Kung-Jeng</creator><creator>Makond, Bunjira</creator><creator>Wang, Kung-Min</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20140401</creationdate><title>Modeling and predicting the occurrence of brain metastasis from lung cancer by Bayesian network: A case study of Taiwan</title><author>Wang, Kung-Jeng ; Makond, Bunjira ; Wang, Kung-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-f629afcf49f277df8599a7f41274f1cabe066e5f7729a66fc93b1e3b09dcd0593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Brain cancer</topic><topic>Brain metastasis</topic><topic>Brain Neoplasms - epidemiology</topic><topic>Brain Neoplasms - secondary</topic><topic>Cancer therapies</topic><topic>Computational Biology - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - epidemiology</topic><topic>Lung Neoplasms - pathology</topic><topic>Male</topic><topic>Metastasis</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Multivariate analysis</topic><topic>Other</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Risk assessment</topic><topic>Sensitivity and Specificity</topic><topic>Taiwan - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kung-Jeng</creatorcontrib><creatorcontrib>Makond, Bunjira</creatorcontrib><creatorcontrib>Wang, Kung-Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kung-Jeng</au><au>Makond, Bunjira</au><au>Wang, Kung-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and predicting the occurrence of brain metastasis from lung cancer by Bayesian network: A case study of Taiwan</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>47</volume><spage>147</spage><epage>160</epage><pages>147-160</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract The Bayesian network (BN) is a promising method for modeling cancer metastasis under uncertainty. BN is graphically represented using bioinformatics variables and can be used to support an informative medical decision/observation by using probabilistic reasoning. In this study, we propose such a BN to describe and predict the occurrence of brain metastasis from lung cancer. A nationwide database containing more than 50,000 cases of cancer patients from 1996 to 2010 in Taiwan was used in this study. The BN topology for studying brain metastasis from lung cancer was rigorously examined by domain experts/doctors. We used three statistical measures, namely, the accuracy, sensitivity, and specificity, to evaluate the performances of the proposed BN model and to compare it with three competitive approaches, namely, naive Bayes (NB), logistic regression (LR) and support vector machine (SVM). Experimental results show that no significant differences are observed in accuracy or specificity among the four models, while the proposed BN outperforms the others in terms of sampled average sensitivity. Moreover the proposed BN has advantages compared with the other approaches in interpreting how brain metastasis develops from lung cancer. It is shown to be easily understood by physicians, to be efficient in modeling non-linear situations, capable of solving stochastic medical problems, and handling situations wherein information are missing in the context of the occurrence of brain metastasis from lung cancer.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>24607682</pmid><doi>10.1016/j.compbiomed.2014.02.002</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2014-04, Vol.47, p.147-160
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1660416683
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Accuracy
Aged
Algorithms
Bayes Theorem
Bayesian analysis
Bayesian network
Brain cancer
Brain metastasis
Brain Neoplasms - epidemiology
Brain Neoplasms - secondary
Cancer therapies
Computational Biology - methods
Female
Humans
Internal Medicine
Lung cancer
Lung Neoplasms - epidemiology
Lung Neoplasms - pathology
Male
Metastasis
Middle Aged
Models, Statistical
Multivariate analysis
Other
Probability
Probability distribution
Risk assessment
Sensitivity and Specificity
Taiwan - epidemiology
title Modeling and predicting the occurrence of brain metastasis from lung cancer by Bayesian network: A case study of Taiwan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20predicting%20the%20occurrence%20of%20brain%20metastasis%20from%20lung%20cancer%20by%20Bayesian%20network:%20A%20case%20study%20of%20Taiwan&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Wang,%20Kung-Jeng&rft.date=2014-04-01&rft.volume=47&rft.spage=147&rft.epage=160&rft.pages=147-160&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2014.02.002&rft_dat=%3Cproquest_cross%3E1660416683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508457147&rft_id=info:pmid/24607682&rft_els_id=1_s2_0_S001048251400033X&rfr_iscdi=true