Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea

Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2015-01, Vol.81 (2), p.304-315
Hauptverfasser: Scalschi, Loredana, Sanmartín, Maite, Camañes, Gemma, Troncho, Pilar, Sánchez‐Serrano, José J, García‐Agustín, Pilar, Vicedo, Begonya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue 2
container_start_page 304
container_title The Plant journal : for cell and molecular biology
container_volume 81
creator Scalschi, Loredana
Sanmartín, Maite
Camañes, Gemma
Troncho, Pilar
Sánchez‐Serrano, José J
García‐Agustín, Pilar
Vicedo, Begonya
description Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.
doi_str_mv 10.1111/tpj.12728
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660412177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3551963261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5818-78221ee1a5bce09e494245e5e18e546b0e57e2a57e948b5564f166dd250038e43</originalsourceid><addsrcrecordid>eNqN0ctu1DAYBWALgehQWPACYIkNLNL6bmdZyl2VWtFWYmd5kj-DR5k42E7RvATPjNO0LJCQ8CK2os_HiQ9Czyk5omUc53F7RJlm5gFaUa5kxSn_9hCtSK1IpQVlB-hJSltCqOZKPEYHTAqimWIr9OvS9zA0ftjg0OHzi68c-wHnsHM54Ag34PqE83fAMfSwkHcnM2lc34cEuIUxJJ99GHA7xTln1q7J_sbdvi17WuhgKDZCGkNZJOw2zg8p47chx332CZcvgAjuKXrUlRPh2d18iK4_vL86_VSdnX_8fHpyVjXSUFNpwxgFoE6uGyA1iFowIUECNSCFWhOQGpgrj1qYtZRKdFSptmWSEG5A8EP0eskdY_gxQcp251MDfe8GCFOyRZNyb1Tr_6BCaq2pZIW--otuwxSH8iOz4ryWzJii3iyqiSGlCJ0do9-5uLeU2LlPW_q0t30W--IucVrvoP0j7wss4HgBP0uP-38n2auLL_eRL5cdnQvWbaJP9vqSEVquhhFBFOG_ARFOslI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643395288</pqid></control><display><type>article</type><title>Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea</title><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Scalschi, Loredana ; Sanmartín, Maite ; Camañes, Gemma ; Troncho, Pilar ; Sánchez‐Serrano, José J ; García‐Agustín, Pilar ; Vicedo, Begonya</creator><creatorcontrib>Scalschi, Loredana ; Sanmartín, Maite ; Camañes, Gemma ; Troncho, Pilar ; Sánchez‐Serrano, José J ; García‐Agustín, Pilar ; Vicedo, Begonya</creatorcontrib><description>Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.12728</identifier><identifier>PMID: 25407262</identifier><language>eng</language><publisher>England: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</publisher><subject>Arabidopsis ; biochemical pathways ; Biosynthesis ; Botrytis ; Botrytis - physiology ; Botrytis cinerea ; callose ; Diazonium Compounds - metabolism ; Gene expression ; genes ; Glucans - metabolism ; jasmonic acid ; Lycopersicon esculentum ; Lycopersicon esculentum - genetics ; Lycopersicon esculentum - metabolism ; Lycopersicon esculentum - microbiology ; OPDA ; OPR3 silencing ; Pathogens ; plant hormones ; Plant pathology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant resistance ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - microbiology ; Pyridines - metabolism ; signal transduction ; Solanum ; Solanum lycopersicum ; tomato plants ; Tomatoes ; Transgenic plants</subject><ispartof>The Plant journal : for cell and molecular biology, 2015-01, Vol.81 (2), p.304-315</ispartof><rights>2014 The Authors The Plant Journal © 2014 John Wiley &amp; Sons Ltd</rights><rights>2014 The Authors The Plant Journal © 2014 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5818-78221ee1a5bce09e494245e5e18e546b0e57e2a57e948b5564f166dd250038e43</citedby><cites>FETCH-LOGICAL-c5818-78221ee1a5bce09e494245e5e18e546b0e57e2a57e948b5564f166dd250038e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.12728$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.12728$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25407262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scalschi, Loredana</creatorcontrib><creatorcontrib>Sanmartín, Maite</creatorcontrib><creatorcontrib>Camañes, Gemma</creatorcontrib><creatorcontrib>Troncho, Pilar</creatorcontrib><creatorcontrib>Sánchez‐Serrano, José J</creatorcontrib><creatorcontrib>García‐Agustín, Pilar</creatorcontrib><creatorcontrib>Vicedo, Begonya</creatorcontrib><title>Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.</description><subject>Arabidopsis</subject><subject>biochemical pathways</subject><subject>Biosynthesis</subject><subject>Botrytis</subject><subject>Botrytis - physiology</subject><subject>Botrytis cinerea</subject><subject>callose</subject><subject>Diazonium Compounds - metabolism</subject><subject>Gene expression</subject><subject>genes</subject><subject>Glucans - metabolism</subject><subject>jasmonic acid</subject><subject>Lycopersicon esculentum</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Lycopersicon esculentum - metabolism</subject><subject>Lycopersicon esculentum - microbiology</subject><subject>OPDA</subject><subject>OPR3 silencing</subject><subject>Pathogens</subject><subject>plant hormones</subject><subject>Plant pathology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant resistance</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>Pyridines - metabolism</subject><subject>signal transduction</subject><subject>Solanum</subject><subject>Solanum lycopersicum</subject><subject>tomato plants</subject><subject>Tomatoes</subject><subject>Transgenic plants</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctu1DAYBWALgehQWPACYIkNLNL6bmdZyl2VWtFWYmd5kj-DR5k42E7RvATPjNO0LJCQ8CK2os_HiQ9Czyk5omUc53F7RJlm5gFaUa5kxSn_9hCtSK1IpQVlB-hJSltCqOZKPEYHTAqimWIr9OvS9zA0ftjg0OHzi68c-wHnsHM54Ag34PqE83fAMfSwkHcnM2lc34cEuIUxJJ99GHA7xTln1q7J_sbdvi17WuhgKDZCGkNZJOw2zg8p47chx332CZcvgAjuKXrUlRPh2d18iK4_vL86_VSdnX_8fHpyVjXSUFNpwxgFoE6uGyA1iFowIUECNSCFWhOQGpgrj1qYtZRKdFSptmWSEG5A8EP0eskdY_gxQcp251MDfe8GCFOyRZNyb1Tr_6BCaq2pZIW--otuwxSH8iOz4ryWzJii3iyqiSGlCJ0do9-5uLeU2LlPW_q0t30W--IucVrvoP0j7wss4HgBP0uP-38n2auLL_eRL5cdnQvWbaJP9vqSEVquhhFBFOG_ARFOslI</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Scalschi, Loredana</creator><creator>Sanmartín, Maite</creator><creator>Camañes, Gemma</creator><creator>Troncho, Pilar</creator><creator>Sánchez‐Serrano, José J</creator><creator>García‐Agustín, Pilar</creator><creator>Vicedo, Begonya</creator><general>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea</title><author>Scalschi, Loredana ; Sanmartín, Maite ; Camañes, Gemma ; Troncho, Pilar ; Sánchez‐Serrano, José J ; García‐Agustín, Pilar ; Vicedo, Begonya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5818-78221ee1a5bce09e494245e5e18e546b0e57e2a57e948b5564f166dd250038e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arabidopsis</topic><topic>biochemical pathways</topic><topic>Biosynthesis</topic><topic>Botrytis</topic><topic>Botrytis - physiology</topic><topic>Botrytis cinerea</topic><topic>callose</topic><topic>Diazonium Compounds - metabolism</topic><topic>Gene expression</topic><topic>genes</topic><topic>Glucans - metabolism</topic><topic>jasmonic acid</topic><topic>Lycopersicon esculentum</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Lycopersicon esculentum - metabolism</topic><topic>Lycopersicon esculentum - microbiology</topic><topic>OPDA</topic><topic>OPR3 silencing</topic><topic>Pathogens</topic><topic>plant hormones</topic><topic>Plant pathology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant resistance</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>Pyridines - metabolism</topic><topic>signal transduction</topic><topic>Solanum</topic><topic>Solanum lycopersicum</topic><topic>tomato plants</topic><topic>Tomatoes</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scalschi, Loredana</creatorcontrib><creatorcontrib>Sanmartín, Maite</creatorcontrib><creatorcontrib>Camañes, Gemma</creatorcontrib><creatorcontrib>Troncho, Pilar</creatorcontrib><creatorcontrib>Sánchez‐Serrano, José J</creatorcontrib><creatorcontrib>García‐Agustín, Pilar</creatorcontrib><creatorcontrib>Vicedo, Begonya</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scalschi, Loredana</au><au>Sanmartín, Maite</au><au>Camañes, Gemma</au><au>Troncho, Pilar</au><au>Sánchez‐Serrano, José J</au><au>García‐Agustín, Pilar</au><au>Vicedo, Begonya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2015-01</date><risdate>2015</risdate><volume>81</volume><issue>2</issue><spage>304</spage><epage>315</epage><pages>304-315</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.</abstract><cop>England</cop><pub>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</pub><pmid>25407262</pmid><doi>10.1111/tpj.12728</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2015-01, Vol.81 (2), p.304-315
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_1660412177
source MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis
biochemical pathways
Biosynthesis
Botrytis
Botrytis - physiology
Botrytis cinerea
callose
Diazonium Compounds - metabolism
Gene expression
genes
Glucans - metabolism
jasmonic acid
Lycopersicon esculentum
Lycopersicon esculentum - genetics
Lycopersicon esculentum - metabolism
Lycopersicon esculentum - microbiology
OPDA
OPR3 silencing
Pathogens
plant hormones
Plant pathology
Plant Proteins - genetics
Plant Proteins - metabolism
Plant resistance
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Plants, Genetically Modified - microbiology
Pyridines - metabolism
signal transduction
Solanum
Solanum lycopersicum
tomato plants
Tomatoes
Transgenic plants
title Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20of%20OPR3%20in%20tomato%20reveals%20the%20role%20of%20OPDA%20in%20callose%20deposition%20during%20the%20activation%20of%20defense%20responses%20against%20Botrytis%20cinerea&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Scalschi,%20Loredana&rft.date=2015-01&rft.volume=81&rft.issue=2&rft.spage=304&rft.epage=315&rft.pages=304-315&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.12728&rft_dat=%3Cproquest_cross%3E3551963261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1643395288&rft_id=info:pmid/25407262&rfr_iscdi=true