Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea
Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase ...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2015-01, Vol.81 (2), p.304-315 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | 2 |
container_start_page | 304 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 81 |
creator | Scalschi, Loredana Sanmartín, Maite Camañes, Gemma Troncho, Pilar Sánchez‐Serrano, José J García‐Agustín, Pilar Vicedo, Begonya |
description | Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen. |
doi_str_mv | 10.1111/tpj.12728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660412177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3551963261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5818-78221ee1a5bce09e494245e5e18e546b0e57e2a57e948b5564f166dd250038e43</originalsourceid><addsrcrecordid>eNqN0ctu1DAYBWALgehQWPACYIkNLNL6bmdZyl2VWtFWYmd5kj-DR5k42E7RvATPjNO0LJCQ8CK2os_HiQ9Czyk5omUc53F7RJlm5gFaUa5kxSn_9hCtSK1IpQVlB-hJSltCqOZKPEYHTAqimWIr9OvS9zA0ftjg0OHzi68c-wHnsHM54Ag34PqE83fAMfSwkHcnM2lc34cEuIUxJJ99GHA7xTln1q7J_sbdvi17WuhgKDZCGkNZJOw2zg8p47chx332CZcvgAjuKXrUlRPh2d18iK4_vL86_VSdnX_8fHpyVjXSUFNpwxgFoE6uGyA1iFowIUECNSCFWhOQGpgrj1qYtZRKdFSptmWSEG5A8EP0eskdY_gxQcp251MDfe8GCFOyRZNyb1Tr_6BCaq2pZIW--otuwxSH8iOz4ryWzJii3iyqiSGlCJ0do9-5uLeU2LlPW_q0t30W--IucVrvoP0j7wss4HgBP0uP-38n2auLL_eRL5cdnQvWbaJP9vqSEVquhhFBFOG_ARFOslI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643395288</pqid></control><display><type>article</type><title>Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea</title><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Scalschi, Loredana ; Sanmartín, Maite ; Camañes, Gemma ; Troncho, Pilar ; Sánchez‐Serrano, José J ; García‐Agustín, Pilar ; Vicedo, Begonya</creator><creatorcontrib>Scalschi, Loredana ; Sanmartín, Maite ; Camañes, Gemma ; Troncho, Pilar ; Sánchez‐Serrano, José J ; García‐Agustín, Pilar ; Vicedo, Begonya</creatorcontrib><description>Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.12728</identifier><identifier>PMID: 25407262</identifier><language>eng</language><publisher>England: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</publisher><subject>Arabidopsis ; biochemical pathways ; Biosynthesis ; Botrytis ; Botrytis - physiology ; Botrytis cinerea ; callose ; Diazonium Compounds - metabolism ; Gene expression ; genes ; Glucans - metabolism ; jasmonic acid ; Lycopersicon esculentum ; Lycopersicon esculentum - genetics ; Lycopersicon esculentum - metabolism ; Lycopersicon esculentum - microbiology ; OPDA ; OPR3 silencing ; Pathogens ; plant hormones ; Plant pathology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant resistance ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - microbiology ; Pyridines - metabolism ; signal transduction ; Solanum ; Solanum lycopersicum ; tomato plants ; Tomatoes ; Transgenic plants</subject><ispartof>The Plant journal : for cell and molecular biology, 2015-01, Vol.81 (2), p.304-315</ispartof><rights>2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd</rights><rights>2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5818-78221ee1a5bce09e494245e5e18e546b0e57e2a57e948b5564f166dd250038e43</citedby><cites>FETCH-LOGICAL-c5818-78221ee1a5bce09e494245e5e18e546b0e57e2a57e948b5564f166dd250038e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.12728$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.12728$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25407262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scalschi, Loredana</creatorcontrib><creatorcontrib>Sanmartín, Maite</creatorcontrib><creatorcontrib>Camañes, Gemma</creatorcontrib><creatorcontrib>Troncho, Pilar</creatorcontrib><creatorcontrib>Sánchez‐Serrano, José J</creatorcontrib><creatorcontrib>García‐Agustín, Pilar</creatorcontrib><creatorcontrib>Vicedo, Begonya</creatorcontrib><title>Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.</description><subject>Arabidopsis</subject><subject>biochemical pathways</subject><subject>Biosynthesis</subject><subject>Botrytis</subject><subject>Botrytis - physiology</subject><subject>Botrytis cinerea</subject><subject>callose</subject><subject>Diazonium Compounds - metabolism</subject><subject>Gene expression</subject><subject>genes</subject><subject>Glucans - metabolism</subject><subject>jasmonic acid</subject><subject>Lycopersicon esculentum</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Lycopersicon esculentum - metabolism</subject><subject>Lycopersicon esculentum - microbiology</subject><subject>OPDA</subject><subject>OPR3 silencing</subject><subject>Pathogens</subject><subject>plant hormones</subject><subject>Plant pathology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant resistance</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>Pyridines - metabolism</subject><subject>signal transduction</subject><subject>Solanum</subject><subject>Solanum lycopersicum</subject><subject>tomato plants</subject><subject>Tomatoes</subject><subject>Transgenic plants</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctu1DAYBWALgehQWPACYIkNLNL6bmdZyl2VWtFWYmd5kj-DR5k42E7RvATPjNO0LJCQ8CK2os_HiQ9Czyk5omUc53F7RJlm5gFaUa5kxSn_9hCtSK1IpQVlB-hJSltCqOZKPEYHTAqimWIr9OvS9zA0ftjg0OHzi68c-wHnsHM54Ag34PqE83fAMfSwkHcnM2lc34cEuIUxJJ99GHA7xTln1q7J_sbdvi17WuhgKDZCGkNZJOw2zg8p47chx332CZcvgAjuKXrUlRPh2d18iK4_vL86_VSdnX_8fHpyVjXSUFNpwxgFoE6uGyA1iFowIUECNSCFWhOQGpgrj1qYtZRKdFSptmWSEG5A8EP0eskdY_gxQcp251MDfe8GCFOyRZNyb1Tr_6BCaq2pZIW--otuwxSH8iOz4ryWzJii3iyqiSGlCJ0do9-5uLeU2LlPW_q0t30W--IucVrvoP0j7wss4HgBP0uP-38n2auLL_eRL5cdnQvWbaJP9vqSEVquhhFBFOG_ARFOslI</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Scalschi, Loredana</creator><creator>Sanmartín, Maite</creator><creator>Camañes, Gemma</creator><creator>Troncho, Pilar</creator><creator>Sánchez‐Serrano, José J</creator><creator>García‐Agustín, Pilar</creator><creator>Vicedo, Begonya</creator><general>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea</title><author>Scalschi, Loredana ; Sanmartín, Maite ; Camañes, Gemma ; Troncho, Pilar ; Sánchez‐Serrano, José J ; García‐Agustín, Pilar ; Vicedo, Begonya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5818-78221ee1a5bce09e494245e5e18e546b0e57e2a57e948b5564f166dd250038e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arabidopsis</topic><topic>biochemical pathways</topic><topic>Biosynthesis</topic><topic>Botrytis</topic><topic>Botrytis - physiology</topic><topic>Botrytis cinerea</topic><topic>callose</topic><topic>Diazonium Compounds - metabolism</topic><topic>Gene expression</topic><topic>genes</topic><topic>Glucans - metabolism</topic><topic>jasmonic acid</topic><topic>Lycopersicon esculentum</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Lycopersicon esculentum - metabolism</topic><topic>Lycopersicon esculentum - microbiology</topic><topic>OPDA</topic><topic>OPR3 silencing</topic><topic>Pathogens</topic><topic>plant hormones</topic><topic>Plant pathology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant resistance</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>Pyridines - metabolism</topic><topic>signal transduction</topic><topic>Solanum</topic><topic>Solanum lycopersicum</topic><topic>tomato plants</topic><topic>Tomatoes</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scalschi, Loredana</creatorcontrib><creatorcontrib>Sanmartín, Maite</creatorcontrib><creatorcontrib>Camañes, Gemma</creatorcontrib><creatorcontrib>Troncho, Pilar</creatorcontrib><creatorcontrib>Sánchez‐Serrano, José J</creatorcontrib><creatorcontrib>García‐Agustín, Pilar</creatorcontrib><creatorcontrib>Vicedo, Begonya</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scalschi, Loredana</au><au>Sanmartín, Maite</au><au>Camañes, Gemma</au><au>Troncho, Pilar</au><au>Sánchez‐Serrano, José J</au><au>García‐Agustín, Pilar</au><au>Vicedo, Begonya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2015-01</date><risdate>2015</risdate><volume>81</volume><issue>2</issue><spage>304</spage><epage>315</epage><pages>304-315</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.</abstract><cop>England</cop><pub>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</pub><pmid>25407262</pmid><doi>10.1111/tpj.12728</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2015-01, Vol.81 (2), p.304-315 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_1660412177 |
source | MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Arabidopsis biochemical pathways Biosynthesis Botrytis Botrytis - physiology Botrytis cinerea callose Diazonium Compounds - metabolism Gene expression genes Glucans - metabolism jasmonic acid Lycopersicon esculentum Lycopersicon esculentum - genetics Lycopersicon esculentum - metabolism Lycopersicon esculentum - microbiology OPDA OPR3 silencing Pathogens plant hormones Plant pathology Plant Proteins - genetics Plant Proteins - metabolism Plant resistance Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Plants, Genetically Modified - microbiology Pyridines - metabolism signal transduction Solanum Solanum lycopersicum tomato plants Tomatoes Transgenic plants |
title | Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20of%20OPR3%20in%20tomato%20reveals%20the%20role%20of%20OPDA%20in%20callose%20deposition%20during%20the%20activation%20of%20defense%20responses%20against%20Botrytis%20cinerea&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Scalschi,%20Loredana&rft.date=2015-01&rft.volume=81&rft.issue=2&rft.spage=304&rft.epage=315&rft.pages=304-315&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.12728&rft_dat=%3Cproquest_cross%3E3551963261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1643395288&rft_id=info:pmid/25407262&rfr_iscdi=true |