The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers

This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2013-10, Vol.455 (1-2), p.338-347
Hauptverfasser: Janković, Biljana, Pelipenko, Jan, Škarabot, Miha, Muševič, Igor, Kristl, Julijana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 1-2
container_start_page 338
container_title International journal of pharmaceutics
container_volume 455
creator Janković, Biljana
Pelipenko, Jan
Škarabot, Miha
Muševič, Igor
Kristl, Julijana
description This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvinyl alcohol (PVA), polyethylene oxide (PEO 400K)) and composite nanofibers (polyvinyl alcohol/hyaluronic acid (PVA/HA), polyethylene oxide/chitosan (PEO 400K/CS)). The mechanical property, namely the bending Young's modulus, increases as the diameter of the fibers decreases from the bulk down to the nanometer regime (less than 200nm). The ranking of increasing stiffness according to the AFM measurements of the three-point beam bending test are in agreement, and can be ranked: PEO 400K
doi_str_mv 10.1016/j.ijpharm.2013.06.083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660410811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517313006030</els_id><sourcerecordid>1660410811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b291a85c02c67b0f1e480670468d74f671af7e846236e2508e6f6dfba994a07e3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEotPCIwBZskm4_ontrBCqgCJVYkG7thz7esajxAn2pCpvj6sMbLuyJX_n-Nx7quodgZYAEZ-ObTguB5OmlgJhLYgWFHtR7YiSrGFcipfVDphUTUcku6gucz4CgKCEva4uKOtByI7sqse7A9YOc9jH-pQwujqUS8h5xQbjPkTEFOK-ztZ4P48u14PJ6Oo51tHEeUJ7MDFYM9ZLmhdMp4C5nn1xceEhuLU84Ij2lOa8rJvGhwFTflO98mbM-PZ8XlX3377eXd80tz-__7j-cttYTumpGWhPjOosUCvkAJ4gVyU6cKGc5F5IYrxExQVlAmkHCoUXzg-m77kBieyq-rj5lny_V8wnPYVscRxNxHnNmggBnIAi5HmU015xyYkoaLehtgyWE3q9pDCZ9EcT0E_96KM-96Of-tEgdOmn6N6fv1iHCd1_1b9CCvBhA7yZtdmnkPX9r-LQARBa6uwL8XkjsGztIWDS2QaMFl1IZdHazeGZEH8BEJuu3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429847416</pqid></control><display><type>article</type><title>The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Janković, Biljana ; Pelipenko, Jan ; Škarabot, Miha ; Muševič, Igor ; Kristl, Julijana</creator><creatorcontrib>Janković, Biljana ; Pelipenko, Jan ; Škarabot, Miha ; Muševič, Igor ; Kristl, Julijana</creatorcontrib><description>This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvinyl alcohol (PVA), polyethylene oxide (PEO 400K)) and composite nanofibers (polyvinyl alcohol/hyaluronic acid (PVA/HA), polyethylene oxide/chitosan (PEO 400K/CS)). The mechanical property, namely the bending Young's modulus, increases as the diameter of the fibers decreases from the bulk down to the nanometer regime (less than 200nm). The ranking of increasing stiffness according to the AFM measurements of the three-point beam bending test are in agreement, and can be ranked: PEO 400K&lt;PVA/HA≈PVA&lt;PEO&lt;400K/CS. According to our results, CS-based nanofibers are the stiffest (15GPa) and the most resilient to erosion in an aqueous medium. Consequently, they possess the most appropriate attributes for bone, tendon, and cartilage tissue scaffold engineering. Nanofibers based on PVA (6GPa) and PEO (3GPa) are more elastic (a smaller bending Young's modulus) and therefore are the most suitable for skin and wound tissue scaffolds.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2013.06.083</identifier><identifier>PMID: 23906751</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Atomic force microscopy ; Calorimetry, Differential Scanning ; cartilage ; chitosan ; Chitosan - chemistry ; Elastic Modulus ; Elasticity ; Electrospinning ; engineering ; Hot Temperature ; hyaluronic acid ; Hyaluronic Acid - chemistry ; mechanical properties ; Microscopy, Atomic Force ; modulus of elasticity ; Nanofiber ; nanofibers ; Nanofibers - chemistry ; polyethylene glycol ; Polyethylene Glycols - chemistry ; polyvinyl alcohol ; Polyvinyl Alcohol - chemistry ; Tissue engineering ; Tissue Engineering - methods ; tissue scaffolds ; Tissue Scaffolds - chemistry</subject><ispartof>International journal of pharmaceutics, 2013-10, Vol.455 (1-2), p.338-347</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b291a85c02c67b0f1e480670468d74f671af7e846236e2508e6f6dfba994a07e3</citedby><cites>FETCH-LOGICAL-c422t-b291a85c02c67b0f1e480670468d74f671af7e846236e2508e6f6dfba994a07e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517313006030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23906751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janković, Biljana</creatorcontrib><creatorcontrib>Pelipenko, Jan</creatorcontrib><creatorcontrib>Škarabot, Miha</creatorcontrib><creatorcontrib>Muševič, Igor</creatorcontrib><creatorcontrib>Kristl, Julijana</creatorcontrib><title>The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvinyl alcohol (PVA), polyethylene oxide (PEO 400K)) and composite nanofibers (polyvinyl alcohol/hyaluronic acid (PVA/HA), polyethylene oxide/chitosan (PEO 400K/CS)). The mechanical property, namely the bending Young's modulus, increases as the diameter of the fibers decreases from the bulk down to the nanometer regime (less than 200nm). The ranking of increasing stiffness according to the AFM measurements of the three-point beam bending test are in agreement, and can be ranked: PEO 400K&lt;PVA/HA≈PVA&lt;PEO&lt;400K/CS. According to our results, CS-based nanofibers are the stiffest (15GPa) and the most resilient to erosion in an aqueous medium. Consequently, they possess the most appropriate attributes for bone, tendon, and cartilage tissue scaffold engineering. Nanofibers based on PVA (6GPa) and PEO (3GPa) are more elastic (a smaller bending Young's modulus) and therefore are the most suitable for skin and wound tissue scaffolds.</description><subject>Atomic force microscopy</subject><subject>Calorimetry, Differential Scanning</subject><subject>cartilage</subject><subject>chitosan</subject><subject>Chitosan - chemistry</subject><subject>Elastic Modulus</subject><subject>Elasticity</subject><subject>Electrospinning</subject><subject>engineering</subject><subject>Hot Temperature</subject><subject>hyaluronic acid</subject><subject>Hyaluronic Acid - chemistry</subject><subject>mechanical properties</subject><subject>Microscopy, Atomic Force</subject><subject>modulus of elasticity</subject><subject>Nanofiber</subject><subject>nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>polyvinyl alcohol</subject><subject>Polyvinyl Alcohol - chemistry</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>tissue scaffolds</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEotPCIwBZskm4_ontrBCqgCJVYkG7thz7esajxAn2pCpvj6sMbLuyJX_n-Nx7quodgZYAEZ-ObTguB5OmlgJhLYgWFHtR7YiSrGFcipfVDphUTUcku6gucz4CgKCEva4uKOtByI7sqse7A9YOc9jH-pQwujqUS8h5xQbjPkTEFOK-ztZ4P48u14PJ6Oo51tHEeUJ7MDFYM9ZLmhdMp4C5nn1xceEhuLU84Ij2lOa8rJvGhwFTflO98mbM-PZ8XlX3377eXd80tz-__7j-cttYTumpGWhPjOosUCvkAJ4gVyU6cKGc5F5IYrxExQVlAmkHCoUXzg-m77kBieyq-rj5lny_V8wnPYVscRxNxHnNmggBnIAi5HmU015xyYkoaLehtgyWE3q9pDCZ9EcT0E_96KM-96Of-tEgdOmn6N6fv1iHCd1_1b9CCvBhA7yZtdmnkPX9r-LQARBa6uwL8XkjsGztIWDS2QaMFl1IZdHazeGZEH8BEJuu3A</recordid><startdate>20131015</startdate><enddate>20131015</enddate><creator>Janković, Biljana</creator><creator>Pelipenko, Jan</creator><creator>Škarabot, Miha</creator><creator>Muševič, Igor</creator><creator>Kristl, Julijana</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131015</creationdate><title>The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers</title><author>Janković, Biljana ; Pelipenko, Jan ; Škarabot, Miha ; Muševič, Igor ; Kristl, Julijana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b291a85c02c67b0f1e480670468d74f671af7e846236e2508e6f6dfba994a07e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic force microscopy</topic><topic>Calorimetry, Differential Scanning</topic><topic>cartilage</topic><topic>chitosan</topic><topic>Chitosan - chemistry</topic><topic>Elastic Modulus</topic><topic>Elasticity</topic><topic>Electrospinning</topic><topic>engineering</topic><topic>Hot Temperature</topic><topic>hyaluronic acid</topic><topic>Hyaluronic Acid - chemistry</topic><topic>mechanical properties</topic><topic>Microscopy, Atomic Force</topic><topic>modulus of elasticity</topic><topic>Nanofiber</topic><topic>nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>polyvinyl alcohol</topic><topic>Polyvinyl Alcohol - chemistry</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>tissue scaffolds</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janković, Biljana</creatorcontrib><creatorcontrib>Pelipenko, Jan</creatorcontrib><creatorcontrib>Škarabot, Miha</creatorcontrib><creatorcontrib>Muševič, Igor</creatorcontrib><creatorcontrib>Kristl, Julijana</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janković, Biljana</au><au>Pelipenko, Jan</au><au>Škarabot, Miha</au><au>Muševič, Igor</au><au>Kristl, Julijana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2013-10-15</date><risdate>2013</risdate><volume>455</volume><issue>1-2</issue><spage>338</spage><epage>347</epage><pages>338-347</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvinyl alcohol (PVA), polyethylene oxide (PEO 400K)) and composite nanofibers (polyvinyl alcohol/hyaluronic acid (PVA/HA), polyethylene oxide/chitosan (PEO 400K/CS)). The mechanical property, namely the bending Young's modulus, increases as the diameter of the fibers decreases from the bulk down to the nanometer regime (less than 200nm). The ranking of increasing stiffness according to the AFM measurements of the three-point beam bending test are in agreement, and can be ranked: PEO 400K&lt;PVA/HA≈PVA&lt;PEO&lt;400K/CS. According to our results, CS-based nanofibers are the stiffest (15GPa) and the most resilient to erosion in an aqueous medium. Consequently, they possess the most appropriate attributes for bone, tendon, and cartilage tissue scaffold engineering. Nanofibers based on PVA (6GPa) and PEO (3GPa) are more elastic (a smaller bending Young's modulus) and therefore are the most suitable for skin and wound tissue scaffolds.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23906751</pmid><doi>10.1016/j.ijpharm.2013.06.083</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2013-10, Vol.455 (1-2), p.338-347
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_1660410811
source MEDLINE; Elsevier ScienceDirect Journals
subjects Atomic force microscopy
Calorimetry, Differential Scanning
cartilage
chitosan
Chitosan - chemistry
Elastic Modulus
Elasticity
Electrospinning
engineering
Hot Temperature
hyaluronic acid
Hyaluronic Acid - chemistry
mechanical properties
Microscopy, Atomic Force
modulus of elasticity
Nanofiber
nanofibers
Nanofibers - chemistry
polyethylene glycol
Polyethylene Glycols - chemistry
polyvinyl alcohol
Polyvinyl Alcohol - chemistry
Tissue engineering
Tissue Engineering - methods
tissue scaffolds
Tissue Scaffolds - chemistry
title The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20design%20trend%20in%20tissue-engineering%20scaffolds%20based%20on%20nanomechanical%20properties%20of%20individual%20electrospun%20nanofibers&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Jankovi%C4%87,%20Biljana&rft.date=2013-10-15&rft.volume=455&rft.issue=1-2&rft.spage=338&rft.epage=347&rft.pages=338-347&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2013.06.083&rft_dat=%3Cproquest_cross%3E1660410811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429847416&rft_id=info:pmid/23906751&rft_els_id=S0378517313006030&rfr_iscdi=true