The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers
This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvi...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2013-10, Vol.455 (1-2), p.338-347 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 1-2 |
container_start_page | 338 |
container_title | International journal of pharmaceutics |
container_volume | 455 |
creator | Janković, Biljana Pelipenko, Jan Škarabot, Miha Muševič, Igor Kristl, Julijana |
description | This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvinyl alcohol (PVA), polyethylene oxide (PEO 400K)) and composite nanofibers (polyvinyl alcohol/hyaluronic acid (PVA/HA), polyethylene oxide/chitosan (PEO 400K/CS)). The mechanical property, namely the bending Young's modulus, increases as the diameter of the fibers decreases from the bulk down to the nanometer regime (less than 200nm). The ranking of increasing stiffness according to the AFM measurements of the three-point beam bending test are in agreement, and can be ranked: PEO 400K |
doi_str_mv | 10.1016/j.ijpharm.2013.06.083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660410811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517313006030</els_id><sourcerecordid>1660410811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b291a85c02c67b0f1e480670468d74f671af7e846236e2508e6f6dfba994a07e3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEotPCIwBZskm4_ontrBCqgCJVYkG7thz7esajxAn2pCpvj6sMbLuyJX_n-Nx7quodgZYAEZ-ObTguB5OmlgJhLYgWFHtR7YiSrGFcipfVDphUTUcku6gucz4CgKCEva4uKOtByI7sqse7A9YOc9jH-pQwujqUS8h5xQbjPkTEFOK-ztZ4P48u14PJ6Oo51tHEeUJ7MDFYM9ZLmhdMp4C5nn1xceEhuLU84Ij2lOa8rJvGhwFTflO98mbM-PZ8XlX3377eXd80tz-__7j-cttYTumpGWhPjOosUCvkAJ4gVyU6cKGc5F5IYrxExQVlAmkHCoUXzg-m77kBieyq-rj5lny_V8wnPYVscRxNxHnNmggBnIAi5HmU015xyYkoaLehtgyWE3q9pDCZ9EcT0E_96KM-96Of-tEgdOmn6N6fv1iHCd1_1b9CCvBhA7yZtdmnkPX9r-LQARBa6uwL8XkjsGztIWDS2QaMFl1IZdHazeGZEH8BEJuu3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429847416</pqid></control><display><type>article</type><title>The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Janković, Biljana ; Pelipenko, Jan ; Škarabot, Miha ; Muševič, Igor ; Kristl, Julijana</creator><creatorcontrib>Janković, Biljana ; Pelipenko, Jan ; Škarabot, Miha ; Muševič, Igor ; Kristl, Julijana</creatorcontrib><description>This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvinyl alcohol (PVA), polyethylene oxide (PEO 400K)) and composite nanofibers (polyvinyl alcohol/hyaluronic acid (PVA/HA), polyethylene oxide/chitosan (PEO 400K/CS)). The mechanical property, namely the bending Young's modulus, increases as the diameter of the fibers decreases from the bulk down to the nanometer regime (less than 200nm). The ranking of increasing stiffness according to the AFM measurements of the three-point beam bending test are in agreement, and can be ranked: PEO 400K<PVA/HA≈PVA<PEO<400K/CS. According to our results, CS-based nanofibers are the stiffest (15GPa) and the most resilient to erosion in an aqueous medium. Consequently, they possess the most appropriate attributes for bone, tendon, and cartilage tissue scaffold engineering. Nanofibers based on PVA (6GPa) and PEO (3GPa) are more elastic (a smaller bending Young's modulus) and therefore are the most suitable for skin and wound tissue scaffolds.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2013.06.083</identifier><identifier>PMID: 23906751</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Atomic force microscopy ; Calorimetry, Differential Scanning ; cartilage ; chitosan ; Chitosan - chemistry ; Elastic Modulus ; Elasticity ; Electrospinning ; engineering ; Hot Temperature ; hyaluronic acid ; Hyaluronic Acid - chemistry ; mechanical properties ; Microscopy, Atomic Force ; modulus of elasticity ; Nanofiber ; nanofibers ; Nanofibers - chemistry ; polyethylene glycol ; Polyethylene Glycols - chemistry ; polyvinyl alcohol ; Polyvinyl Alcohol - chemistry ; Tissue engineering ; Tissue Engineering - methods ; tissue scaffolds ; Tissue Scaffolds - chemistry</subject><ispartof>International journal of pharmaceutics, 2013-10, Vol.455 (1-2), p.338-347</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b291a85c02c67b0f1e480670468d74f671af7e846236e2508e6f6dfba994a07e3</citedby><cites>FETCH-LOGICAL-c422t-b291a85c02c67b0f1e480670468d74f671af7e846236e2508e6f6dfba994a07e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517313006030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23906751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janković, Biljana</creatorcontrib><creatorcontrib>Pelipenko, Jan</creatorcontrib><creatorcontrib>Škarabot, Miha</creatorcontrib><creatorcontrib>Muševič, Igor</creatorcontrib><creatorcontrib>Kristl, Julijana</creatorcontrib><title>The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvinyl alcohol (PVA), polyethylene oxide (PEO 400K)) and composite nanofibers (polyvinyl alcohol/hyaluronic acid (PVA/HA), polyethylene oxide/chitosan (PEO 400K/CS)). The mechanical property, namely the bending Young's modulus, increases as the diameter of the fibers decreases from the bulk down to the nanometer regime (less than 200nm). The ranking of increasing stiffness according to the AFM measurements of the three-point beam bending test are in agreement, and can be ranked: PEO 400K<PVA/HA≈PVA<PEO<400K/CS. According to our results, CS-based nanofibers are the stiffest (15GPa) and the most resilient to erosion in an aqueous medium. Consequently, they possess the most appropriate attributes for bone, tendon, and cartilage tissue scaffold engineering. Nanofibers based on PVA (6GPa) and PEO (3GPa) are more elastic (a smaller bending Young's modulus) and therefore are the most suitable for skin and wound tissue scaffolds.</description><subject>Atomic force microscopy</subject><subject>Calorimetry, Differential Scanning</subject><subject>cartilage</subject><subject>chitosan</subject><subject>Chitosan - chemistry</subject><subject>Elastic Modulus</subject><subject>Elasticity</subject><subject>Electrospinning</subject><subject>engineering</subject><subject>Hot Temperature</subject><subject>hyaluronic acid</subject><subject>Hyaluronic Acid - chemistry</subject><subject>mechanical properties</subject><subject>Microscopy, Atomic Force</subject><subject>modulus of elasticity</subject><subject>Nanofiber</subject><subject>nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>polyvinyl alcohol</subject><subject>Polyvinyl Alcohol - chemistry</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>tissue scaffolds</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEotPCIwBZskm4_ontrBCqgCJVYkG7thz7esajxAn2pCpvj6sMbLuyJX_n-Nx7quodgZYAEZ-ObTguB5OmlgJhLYgWFHtR7YiSrGFcipfVDphUTUcku6gucz4CgKCEva4uKOtByI7sqse7A9YOc9jH-pQwujqUS8h5xQbjPkTEFOK-ztZ4P48u14PJ6Oo51tHEeUJ7MDFYM9ZLmhdMp4C5nn1xceEhuLU84Ij2lOa8rJvGhwFTflO98mbM-PZ8XlX3377eXd80tz-__7j-cttYTumpGWhPjOosUCvkAJ4gVyU6cKGc5F5IYrxExQVlAmkHCoUXzg-m77kBieyq-rj5lny_V8wnPYVscRxNxHnNmggBnIAi5HmU015xyYkoaLehtgyWE3q9pDCZ9EcT0E_96KM-96Of-tEgdOmn6N6fv1iHCd1_1b9CCvBhA7yZtdmnkPX9r-LQARBa6uwL8XkjsGztIWDS2QaMFl1IZdHazeGZEH8BEJuu3A</recordid><startdate>20131015</startdate><enddate>20131015</enddate><creator>Janković, Biljana</creator><creator>Pelipenko, Jan</creator><creator>Škarabot, Miha</creator><creator>Muševič, Igor</creator><creator>Kristl, Julijana</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131015</creationdate><title>The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers</title><author>Janković, Biljana ; Pelipenko, Jan ; Škarabot, Miha ; Muševič, Igor ; Kristl, Julijana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b291a85c02c67b0f1e480670468d74f671af7e846236e2508e6f6dfba994a07e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic force microscopy</topic><topic>Calorimetry, Differential Scanning</topic><topic>cartilage</topic><topic>chitosan</topic><topic>Chitosan - chemistry</topic><topic>Elastic Modulus</topic><topic>Elasticity</topic><topic>Electrospinning</topic><topic>engineering</topic><topic>Hot Temperature</topic><topic>hyaluronic acid</topic><topic>Hyaluronic Acid - chemistry</topic><topic>mechanical properties</topic><topic>Microscopy, Atomic Force</topic><topic>modulus of elasticity</topic><topic>Nanofiber</topic><topic>nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>polyvinyl alcohol</topic><topic>Polyvinyl Alcohol - chemistry</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>tissue scaffolds</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janković, Biljana</creatorcontrib><creatorcontrib>Pelipenko, Jan</creatorcontrib><creatorcontrib>Škarabot, Miha</creatorcontrib><creatorcontrib>Muševič, Igor</creatorcontrib><creatorcontrib>Kristl, Julijana</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janković, Biljana</au><au>Pelipenko, Jan</au><au>Škarabot, Miha</au><au>Muševič, Igor</au><au>Kristl, Julijana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2013-10-15</date><risdate>2013</risdate><volume>455</volume><issue>1-2</issue><spage>338</spage><epage>347</epage><pages>338-347</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvinyl alcohol (PVA), polyethylene oxide (PEO 400K)) and composite nanofibers (polyvinyl alcohol/hyaluronic acid (PVA/HA), polyethylene oxide/chitosan (PEO 400K/CS)). The mechanical property, namely the bending Young's modulus, increases as the diameter of the fibers decreases from the bulk down to the nanometer regime (less than 200nm). The ranking of increasing stiffness according to the AFM measurements of the three-point beam bending test are in agreement, and can be ranked: PEO 400K<PVA/HA≈PVA<PEO<400K/CS. According to our results, CS-based nanofibers are the stiffest (15GPa) and the most resilient to erosion in an aqueous medium. Consequently, they possess the most appropriate attributes for bone, tendon, and cartilage tissue scaffold engineering. Nanofibers based on PVA (6GPa) and PEO (3GPa) are more elastic (a smaller bending Young's modulus) and therefore are the most suitable for skin and wound tissue scaffolds.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23906751</pmid><doi>10.1016/j.ijpharm.2013.06.083</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-5173 |
ispartof | International journal of pharmaceutics, 2013-10, Vol.455 (1-2), p.338-347 |
issn | 0378-5173 1873-3476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660410811 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Atomic force microscopy Calorimetry, Differential Scanning cartilage chitosan Chitosan - chemistry Elastic Modulus Elasticity Electrospinning engineering Hot Temperature hyaluronic acid Hyaluronic Acid - chemistry mechanical properties Microscopy, Atomic Force modulus of elasticity Nanofiber nanofibers Nanofibers - chemistry polyethylene glycol Polyethylene Glycols - chemistry polyvinyl alcohol Polyvinyl Alcohol - chemistry Tissue engineering Tissue Engineering - methods tissue scaffolds Tissue Scaffolds - chemistry |
title | The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20design%20trend%20in%20tissue-engineering%20scaffolds%20based%20on%20nanomechanical%20properties%20of%20individual%20electrospun%20nanofibers&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Jankovi%C4%87,%20Biljana&rft.date=2013-10-15&rft.volume=455&rft.issue=1-2&rft.spage=338&rft.epage=347&rft.pages=338-347&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2013.06.083&rft_dat=%3Cproquest_cross%3E1660410811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429847416&rft_id=info:pmid/23906751&rft_els_id=S0378517313006030&rfr_iscdi=true |