A quantitative model of the major pathways for radiation-induced DNA double-strand break repair

We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the non-homologous end-joining (NHEJ), homologous re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2015-02, Vol.366, p.115-130
Hauptverfasser: Belov, Oleg V., Krasavin, Eugene A., Lyashko, Marina S., Batmunkh, Munkhbaatar, Sweilam, Nasser H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the non-homologous end-joining (NHEJ), homologous recombination (HR), single-strand annealing (SSA) and two alternative end-joining pathways. It reconstructs the time-courses of radiation-induced foci specific to particular repair processes including the major intermediate stages. The model is validated for ionizing radiations of a wide range of linear energy transfer (0.2–236keV/µm) including a relatively broad spectrum of heavy ions. The appropriate set of reaction rate constants was suggested to satisfy the kinetics of DSB rejoining for the considered types of exposure. The simultaneous assessment of several repair pathways allows to describe their possible biological relations in response to irradiation. With the help of the proposed approach, we reproduce several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions. The results produced confirm the hypothesis suggesting existence of at least two alternative Ku-independent end-joining pathways.
ISSN:0022-5193
1095-8541
DOI:10.1016/j.jtbi.2014.09.024