Multidimensional Feature Extraction Based on Timbre Model for Heart Sound Analysis
Cardiovascular diseases (CVDs) are currently the leading cause of deaths worldwide. The traditional auscultation is cost-effective and time-saving for the public to diagnose CVDs early. While many approaches in analysis of the heart sound (HS) signal from auscultation have been utilized successfully...
Gespeichert in:
Veröffentlicht in: | International journal of bioscience, biochemistry, bioinformatics (IJBBB) biochemistry, bioinformatics (IJBBB), 2014-09, Vol.4 (5), p.318-321 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 321 |
---|---|
container_issue | 5 |
container_start_page | 318 |
container_title | International journal of bioscience, biochemistry, bioinformatics (IJBBB) |
container_volume | 4 |
creator | Wang, Hai-Yang Li, Guang-Pei Fu, Bin-Bin Huang, Jun Dong, Ming-Chui |
description | Cardiovascular diseases (CVDs) are currently the leading cause of deaths worldwide. The traditional auscultation is cost-effective and time-saving for the public to diagnose CVDs early. While many approaches in analysis of the heart sound (HS) signal from auscultation have been utilized successfully, few studies are focused on acoustic perspective to interpret the HS signal. This paper creatively proposes a multidimensional feature extraction technique based on timbre model to interpret HS, which stems from clinical diagnostic basis and medical knowledge. The extracted features have three dimensions, including spectral centroid (SC), log attack time (LT) and temporal centroid (TC). The simulation experiments indicate that the proposed method is promising in HS feature extraction and the later CVD diagnosis. |
doi_str_mv | 10.7763/IJBBB.2014.V4.362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660410448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660410448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758-1af686a30fdc253a6a366b4a95d59612565f4fbda14545febb05cfda766b0eee3</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxS0EElXpB2DzyJJgx3-Sjk3V0qJWSFB1tZz4LAUlcbETiX57XMrALffu7r0bfgg9UpLmuWTP29eyLNOMUJ4eecpkdoMmcSIJk6y4_afv0SyETxIrz-c0yybofT-2Q2OaDvrQuF63eA16GD3g1ffgdT3EJS51AIOjODRdFU97Z6DF1nm8Ae0H_OHG3uBFTJ9DEx7QndVtgNlfn6LDenVYbpLd28t2udgldS6KhGorC6kZsabOBNNRSllxPRdGzCXNhBSW28poygUXFqqKiNoanUcXAQA2RU_XtyfvvkYIg-qaUEPb6h7cGBSVknBKOC-ilV6ttXcheLDq5JtO-7OiRF0Iql-C6kJQHbmKBNkP1JBkdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660410448</pqid></control><display><type>article</type><title>Multidimensional Feature Extraction Based on Timbre Model for Heart Sound Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Hai-Yang ; Li, Guang-Pei ; Fu, Bin-Bin ; Huang, Jun ; Dong, Ming-Chui</creator><creatorcontrib>Wang, Hai-Yang ; Li, Guang-Pei ; Fu, Bin-Bin ; Huang, Jun ; Dong, Ming-Chui</creatorcontrib><description>Cardiovascular diseases (CVDs) are currently the leading cause of deaths worldwide. The traditional auscultation is cost-effective and time-saving for the public to diagnose CVDs early. While many approaches in analysis of the heart sound (HS) signal from auscultation have been utilized successfully, few studies are focused on acoustic perspective to interpret the HS signal. This paper creatively proposes a multidimensional feature extraction technique based on timbre model to interpret HS, which stems from clinical diagnostic basis and medical knowledge. The extracted features have three dimensions, including spectral centroid (SC), log attack time (LT) and temporal centroid (TC). The simulation experiments indicate that the proposed method is promising in HS feature extraction and the later CVD diagnosis.</description><identifier>ISSN: 2010-3638</identifier><identifier>EISSN: 2010-3638</identifier><identifier>DOI: 10.7763/IJBBB.2014.V4.362</identifier><language>eng</language><ispartof>International journal of bioscience, biochemistry, bioinformatics (IJBBB), 2014-09, Vol.4 (5), p.318-321</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c758-1af686a30fdc253a6a366b4a95d59612565f4fbda14545febb05cfda766b0eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Hai-Yang</creatorcontrib><creatorcontrib>Li, Guang-Pei</creatorcontrib><creatorcontrib>Fu, Bin-Bin</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Dong, Ming-Chui</creatorcontrib><title>Multidimensional Feature Extraction Based on Timbre Model for Heart Sound Analysis</title><title>International journal of bioscience, biochemistry, bioinformatics (IJBBB)</title><description>Cardiovascular diseases (CVDs) are currently the leading cause of deaths worldwide. The traditional auscultation is cost-effective and time-saving for the public to diagnose CVDs early. While many approaches in analysis of the heart sound (HS) signal from auscultation have been utilized successfully, few studies are focused on acoustic perspective to interpret the HS signal. This paper creatively proposes a multidimensional feature extraction technique based on timbre model to interpret HS, which stems from clinical diagnostic basis and medical knowledge. The extracted features have three dimensions, including spectral centroid (SC), log attack time (LT) and temporal centroid (TC). The simulation experiments indicate that the proposed method is promising in HS feature extraction and the later CVD diagnosis.</description><issn>2010-3638</issn><issn>2010-3638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkD9PwzAQxS0EElXpB2DzyJJgx3-Sjk3V0qJWSFB1tZz4LAUlcbETiX57XMrALffu7r0bfgg9UpLmuWTP29eyLNOMUJ4eecpkdoMmcSIJk6y4_afv0SyETxIrz-c0yybofT-2Q2OaDvrQuF63eA16GD3g1ffgdT3EJS51AIOjODRdFU97Z6DF1nm8Ae0H_OHG3uBFTJ9DEx7QndVtgNlfn6LDenVYbpLd28t2udgldS6KhGorC6kZsabOBNNRSllxPRdGzCXNhBSW28poygUXFqqKiNoanUcXAQA2RU_XtyfvvkYIg-qaUEPb6h7cGBSVknBKOC-ilV6ttXcheLDq5JtO-7OiRF0Iql-C6kJQHbmKBNkP1JBkdA</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Wang, Hai-Yang</creator><creator>Li, Guang-Pei</creator><creator>Fu, Bin-Bin</creator><creator>Huang, Jun</creator><creator>Dong, Ming-Chui</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140901</creationdate><title>Multidimensional Feature Extraction Based on Timbre Model for Heart Sound Analysis</title><author>Wang, Hai-Yang ; Li, Guang-Pei ; Fu, Bin-Bin ; Huang, Jun ; Dong, Ming-Chui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758-1af686a30fdc253a6a366b4a95d59612565f4fbda14545febb05cfda766b0eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hai-Yang</creatorcontrib><creatorcontrib>Li, Guang-Pei</creatorcontrib><creatorcontrib>Fu, Bin-Bin</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Dong, Ming-Chui</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal of bioscience, biochemistry, bioinformatics (IJBBB)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hai-Yang</au><au>Li, Guang-Pei</au><au>Fu, Bin-Bin</au><au>Huang, Jun</au><au>Dong, Ming-Chui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Feature Extraction Based on Timbre Model for Heart Sound Analysis</atitle><jtitle>International journal of bioscience, biochemistry, bioinformatics (IJBBB)</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>4</volume><issue>5</issue><spage>318</spage><epage>321</epage><pages>318-321</pages><issn>2010-3638</issn><eissn>2010-3638</eissn><abstract>Cardiovascular diseases (CVDs) are currently the leading cause of deaths worldwide. The traditional auscultation is cost-effective and time-saving for the public to diagnose CVDs early. While many approaches in analysis of the heart sound (HS) signal from auscultation have been utilized successfully, few studies are focused on acoustic perspective to interpret the HS signal. This paper creatively proposes a multidimensional feature extraction technique based on timbre model to interpret HS, which stems from clinical diagnostic basis and medical knowledge. The extracted features have three dimensions, including spectral centroid (SC), log attack time (LT) and temporal centroid (TC). The simulation experiments indicate that the proposed method is promising in HS feature extraction and the later CVD diagnosis.</abstract><doi>10.7763/IJBBB.2014.V4.362</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2010-3638 |
ispartof | International journal of bioscience, biochemistry, bioinformatics (IJBBB), 2014-09, Vol.4 (5), p.318-321 |
issn | 2010-3638 2010-3638 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660410448 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Multidimensional Feature Extraction Based on Timbre Model for Heart Sound Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Feature%20Extraction%20Based%20on%20Timbre%20Model%20for%20Heart%20Sound%20Analysis&rft.jtitle=International%20journal%20of%20bioscience,%20biochemistry,%20bioinformatics%20(IJBBB)&rft.au=Wang,%20Hai-Yang&rft.date=2014-09-01&rft.volume=4&rft.issue=5&rft.spage=318&rft.epage=321&rft.pages=318-321&rft.issn=2010-3638&rft.eissn=2010-3638&rft_id=info:doi/10.7763/IJBBB.2014.V4.362&rft_dat=%3Cproquest_cross%3E1660410448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660410448&rft_id=info:pmid/&rfr_iscdi=true |