Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide
•The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysi...
Gespeichert in:
Veröffentlicht in: | Enzyme and microbial technology 2014-10, Vol.64-65, p.38-43 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | |
container_start_page | 38 |
container_title | Enzyme and microbial technology |
container_volume | 64-65 |
creator | Nguyen, Thi Thanh Hanh Jung, Seung-Jin Kang, Hee-Kyoung Kim, Young-Min Moon, Young-Hwan Kim, Misook Kim, Doman |
description | •The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysis of the increased water solubility of liquiritin and of teniposide using rubusoside.
Solubility is an important factor for achieving the desired plasma level of drug for pharmacological response. About 40% of drugs are not soluble in water in practice and therefore are slowly absorbed, which results in insufficient and uneven bioavailability and GI toxicity. Rubusoside (Ru) is a sweetener component in herbal tea and was discovered to enhance the solubility of a number of pharmaceutically and medicinally important compounds, including anticancer compounds. In this study, thirty-one hydrolyzing enzymes were screened for the conversion of stevioside (Ste) to Ru. Recombinant lactase from Thermus thermophiles which was expressed in Escherichia coli converted stevioside to rubusoside as a main product. Immobilized lactase was prepared and used for the production of rubusoside; twelve reaction cycles were repeated with 95.4% of Ste hydrolysis and 49gL−1 of Ru was produced. The optimum rubusoside synthesis yield was 86% at 200gL−1, 1200U lactase. The purified 10% rubusoside solution showed increased water solubility of liquiritin from 0.98mgmL−1 to 4.70±0.12mgmL−1 and 0mgmL−1 to 3.42±0.11mgmL−1 in the case of teniposide. |
doi_str_mv | 10.1016/j.enzmictec.2014.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660401313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141022914001240</els_id><sourcerecordid>1660401313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-172e5daf632378d874c182b2350fa776243d380510a371b2d9436f9b71ee7aee3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhL4CPXBL8lTg5VhXQSpXgUM6WY09YrxJ7649K25_Cr8XbXXrlNHo1z8yrmRehT5S0lND-y64F_7Q6k8G0jFDREtkSQl-hDR3k2JCRjK_RpjZoQxgbL9C7lHakEkKQt-iCdbRjgnYb9OdnDLaY7ILHYcaxTCWF5CzgOYYVpwyP7qSnAy7J-d9Y47yFuIaU9bQAXrTJOp35-2OnpDOx37qlCu0tTmEpk1tcPmDwW-0NrODz0XJxD8VFl51_BjN4t392fI_ezHpJ8OFcL9Gvb1_vr2-aux_fb6-v7hojiMgNlQw6q-eeMy4HO0hh6MAmxjsyayl7JrjlA-ko0VzSidlR8H4eJ0kBpAbgl-jzae8-hocCKavVJQPLoj2EkhTteyII5ZRXVJ5QE0NKEWa1j27V8aAoUcdg1E69BKOOwSgiVX17nfx4NinTCvZl7l8SFbg6AVBPfXQQVTIO6p-si2CyssH91-QvVVmngQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660401313</pqid></control><display><type>article</type><title>Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Nguyen, Thi Thanh Hanh ; Jung, Seung-Jin ; Kang, Hee-Kyoung ; Kim, Young-Min ; Moon, Young-Hwan ; Kim, Misook ; Kim, Doman</creator><creatorcontrib>Nguyen, Thi Thanh Hanh ; Jung, Seung-Jin ; Kang, Hee-Kyoung ; Kim, Young-Min ; Moon, Young-Hwan ; Kim, Misook ; Kim, Doman</creatorcontrib><description>•The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysis of the increased water solubility of liquiritin and of teniposide using rubusoside.
Solubility is an important factor for achieving the desired plasma level of drug for pharmacological response. About 40% of drugs are not soluble in water in practice and therefore are slowly absorbed, which results in insufficient and uneven bioavailability and GI toxicity. Rubusoside (Ru) is a sweetener component in herbal tea and was discovered to enhance the solubility of a number of pharmaceutically and medicinally important compounds, including anticancer compounds. In this study, thirty-one hydrolyzing enzymes were screened for the conversion of stevioside (Ste) to Ru. Recombinant lactase from Thermus thermophiles which was expressed in Escherichia coli converted stevioside to rubusoside as a main product. Immobilized lactase was prepared and used for the production of rubusoside; twelve reaction cycles were repeated with 95.4% of Ste hydrolysis and 49gL−1 of Ru was produced. The optimum rubusoside synthesis yield was 86% at 200gL−1, 1200U lactase. The purified 10% rubusoside solution showed increased water solubility of liquiritin from 0.98mgmL−1 to 4.70±0.12mgmL−1 and 0mgmL−1 to 3.42±0.11mgmL−1 in the case of teniposide.</description><identifier>ISSN: 0141-0229</identifier><identifier>EISSN: 1879-0909</identifier><identifier>DOI: 10.1016/j.enzmictec.2014.07.001</identifier><identifier>PMID: 25152415</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacokinetics ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological Availability ; Diterpenes, Kaurane - biosynthesis ; Diterpenes, Kaurane - metabolism ; Diterpenes, Kaurane - pharmacology ; Enzyme Stability ; Enzymes, Immobilized - genetics ; Enzymes, Immobilized - metabolism ; Escherichia coli ; Flavanones - chemistry ; Flavanones - pharmacokinetics ; Glucosides - biosynthesis ; Glucosides - chemistry ; Glucosides - metabolism ; Glucosides - pharmacokinetics ; Glucosides - pharmacology ; Humans ; Immobilized lactase ; Industrial Microbiology ; Lactase - genetics ; Lactase - metabolism ; Liquiritin ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Rubusoside ; Solubility - drug effects ; Sweetening Agents - metabolism ; Sweetening Agents - pharmacology ; Temperature ; Teniposide ; Teniposide - chemistry ; Teniposide - pharmacokinetics ; Thermus ; Thermus thermophilus ; Thermus thermophilus - enzymology ; Thermus thermophilus - genetics</subject><ispartof>Enzyme and microbial technology, 2014-10, Vol.64-65, p.38-43</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-172e5daf632378d874c182b2350fa776243d380510a371b2d9436f9b71ee7aee3</citedby><cites>FETCH-LOGICAL-c404t-172e5daf632378d874c182b2350fa776243d380510a371b2d9436f9b71ee7aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enzmictec.2014.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25152415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Thi Thanh Hanh</creatorcontrib><creatorcontrib>Jung, Seung-Jin</creatorcontrib><creatorcontrib>Kang, Hee-Kyoung</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Moon, Young-Hwan</creatorcontrib><creatorcontrib>Kim, Misook</creatorcontrib><creatorcontrib>Kim, Doman</creatorcontrib><title>Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide</title><title>Enzyme and microbial technology</title><addtitle>Enzyme Microb Technol</addtitle><description>•The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysis of the increased water solubility of liquiritin and of teniposide using rubusoside.
Solubility is an important factor for achieving the desired plasma level of drug for pharmacological response. About 40% of drugs are not soluble in water in practice and therefore are slowly absorbed, which results in insufficient and uneven bioavailability and GI toxicity. Rubusoside (Ru) is a sweetener component in herbal tea and was discovered to enhance the solubility of a number of pharmaceutically and medicinally important compounds, including anticancer compounds. In this study, thirty-one hydrolyzing enzymes were screened for the conversion of stevioside (Ste) to Ru. Recombinant lactase from Thermus thermophiles which was expressed in Escherichia coli converted stevioside to rubusoside as a main product. Immobilized lactase was prepared and used for the production of rubusoside; twelve reaction cycles were repeated with 95.4% of Ste hydrolysis and 49gL−1 of Ru was produced. The optimum rubusoside synthesis yield was 86% at 200gL−1, 1200U lactase. The purified 10% rubusoside solution showed increased water solubility of liquiritin from 0.98mgmL−1 to 4.70±0.12mgmL−1 and 0mgmL−1 to 3.42±0.11mgmL−1 in the case of teniposide.</description><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Availability</subject><subject>Diterpenes, Kaurane - biosynthesis</subject><subject>Diterpenes, Kaurane - metabolism</subject><subject>Diterpenes, Kaurane - pharmacology</subject><subject>Enzyme Stability</subject><subject>Enzymes, Immobilized - genetics</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Escherichia coli</subject><subject>Flavanones - chemistry</subject><subject>Flavanones - pharmacokinetics</subject><subject>Glucosides - biosynthesis</subject><subject>Glucosides - chemistry</subject><subject>Glucosides - metabolism</subject><subject>Glucosides - pharmacokinetics</subject><subject>Glucosides - pharmacology</subject><subject>Humans</subject><subject>Immobilized lactase</subject><subject>Industrial Microbiology</subject><subject>Lactase - genetics</subject><subject>Lactase - metabolism</subject><subject>Liquiritin</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Rubusoside</subject><subject>Solubility - drug effects</subject><subject>Sweetening Agents - metabolism</subject><subject>Sweetening Agents - pharmacology</subject><subject>Temperature</subject><subject>Teniposide</subject><subject>Teniposide - chemistry</subject><subject>Teniposide - pharmacokinetics</subject><subject>Thermus</subject><subject>Thermus thermophilus</subject><subject>Thermus thermophilus - enzymology</subject><subject>Thermus thermophilus - genetics</subject><issn>0141-0229</issn><issn>1879-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhL4CPXBL8lTg5VhXQSpXgUM6WY09YrxJ7649K25_Cr8XbXXrlNHo1z8yrmRehT5S0lND-y64F_7Q6k8G0jFDREtkSQl-hDR3k2JCRjK_RpjZoQxgbL9C7lHakEkKQt-iCdbRjgnYb9OdnDLaY7ILHYcaxTCWF5CzgOYYVpwyP7qSnAy7J-d9Y47yFuIaU9bQAXrTJOp35-2OnpDOx37qlCu0tTmEpk1tcPmDwW-0NrODz0XJxD8VFl51_BjN4t392fI_ezHpJ8OFcL9Gvb1_vr2-aux_fb6-v7hojiMgNlQw6q-eeMy4HO0hh6MAmxjsyayl7JrjlA-ko0VzSidlR8H4eJ0kBpAbgl-jzae8-hocCKavVJQPLoj2EkhTteyII5ZRXVJ5QE0NKEWa1j27V8aAoUcdg1E69BKOOwSgiVX17nfx4NinTCvZl7l8SFbg6AVBPfXQQVTIO6p-si2CyssH91-QvVVmngQ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Nguyen, Thi Thanh Hanh</creator><creator>Jung, Seung-Jin</creator><creator>Kang, Hee-Kyoung</creator><creator>Kim, Young-Min</creator><creator>Moon, Young-Hwan</creator><creator>Kim, Misook</creator><creator>Kim, Doman</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20141001</creationdate><title>Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide</title><author>Nguyen, Thi Thanh Hanh ; Jung, Seung-Jin ; Kang, Hee-Kyoung ; Kim, Young-Min ; Moon, Young-Hwan ; Kim, Misook ; Kim, Doman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-172e5daf632378d874c182b2350fa776243d380510a371b2d9436f9b71ee7aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Availability</topic><topic>Diterpenes, Kaurane - biosynthesis</topic><topic>Diterpenes, Kaurane - metabolism</topic><topic>Diterpenes, Kaurane - pharmacology</topic><topic>Enzyme Stability</topic><topic>Enzymes, Immobilized - genetics</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Escherichia coli</topic><topic>Flavanones - chemistry</topic><topic>Flavanones - pharmacokinetics</topic><topic>Glucosides - biosynthesis</topic><topic>Glucosides - chemistry</topic><topic>Glucosides - metabolism</topic><topic>Glucosides - pharmacokinetics</topic><topic>Glucosides - pharmacology</topic><topic>Humans</topic><topic>Immobilized lactase</topic><topic>Industrial Microbiology</topic><topic>Lactase - genetics</topic><topic>Lactase - metabolism</topic><topic>Liquiritin</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Rubusoside</topic><topic>Solubility - drug effects</topic><topic>Sweetening Agents - metabolism</topic><topic>Sweetening Agents - pharmacology</topic><topic>Temperature</topic><topic>Teniposide</topic><topic>Teniposide - chemistry</topic><topic>Teniposide - pharmacokinetics</topic><topic>Thermus</topic><topic>Thermus thermophilus</topic><topic>Thermus thermophilus - enzymology</topic><topic>Thermus thermophilus - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thi Thanh Hanh</creatorcontrib><creatorcontrib>Jung, Seung-Jin</creatorcontrib><creatorcontrib>Kang, Hee-Kyoung</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Moon, Young-Hwan</creatorcontrib><creatorcontrib>Kim, Misook</creatorcontrib><creatorcontrib>Kim, Doman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Enzyme and microbial technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thi Thanh Hanh</au><au>Jung, Seung-Jin</au><au>Kang, Hee-Kyoung</au><au>Kim, Young-Min</au><au>Moon, Young-Hwan</au><au>Kim, Misook</au><au>Kim, Doman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide</atitle><jtitle>Enzyme and microbial technology</jtitle><addtitle>Enzyme Microb Technol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>64-65</volume><spage>38</spage><epage>43</epage><pages>38-43</pages><issn>0141-0229</issn><eissn>1879-0909</eissn><abstract>•The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysis of the increased water solubility of liquiritin and of teniposide using rubusoside.
Solubility is an important factor for achieving the desired plasma level of drug for pharmacological response. About 40% of drugs are not soluble in water in practice and therefore are slowly absorbed, which results in insufficient and uneven bioavailability and GI toxicity. Rubusoside (Ru) is a sweetener component in herbal tea and was discovered to enhance the solubility of a number of pharmaceutically and medicinally important compounds, including anticancer compounds. In this study, thirty-one hydrolyzing enzymes were screened for the conversion of stevioside (Ste) to Ru. Recombinant lactase from Thermus thermophiles which was expressed in Escherichia coli converted stevioside to rubusoside as a main product. Immobilized lactase was prepared and used for the production of rubusoside; twelve reaction cycles were repeated with 95.4% of Ste hydrolysis and 49gL−1 of Ru was produced. The optimum rubusoside synthesis yield was 86% at 200gL−1, 1200U lactase. The purified 10% rubusoside solution showed increased water solubility of liquiritin from 0.98mgmL−1 to 4.70±0.12mgmL−1 and 0mgmL−1 to 3.42±0.11mgmL−1 in the case of teniposide.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25152415</pmid><doi>10.1016/j.enzmictec.2014.07.001</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0229 |
ispartof | Enzyme and microbial technology, 2014-10, Vol.64-65, p.38-43 |
issn | 0141-0229 1879-0909 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660401313 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacokinetics Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological Availability Diterpenes, Kaurane - biosynthesis Diterpenes, Kaurane - metabolism Diterpenes, Kaurane - pharmacology Enzyme Stability Enzymes, Immobilized - genetics Enzymes, Immobilized - metabolism Escherichia coli Flavanones - chemistry Flavanones - pharmacokinetics Glucosides - biosynthesis Glucosides - chemistry Glucosides - metabolism Glucosides - pharmacokinetics Glucosides - pharmacology Humans Immobilized lactase Industrial Microbiology Lactase - genetics Lactase - metabolism Liquiritin Recombinant Proteins - genetics Recombinant Proteins - metabolism Rubusoside Solubility - drug effects Sweetening Agents - metabolism Sweetening Agents - pharmacology Temperature Teniposide Teniposide - chemistry Teniposide - pharmacokinetics Thermus Thermus thermophilus Thermus thermophilus - enzymology Thermus thermophilus - genetics |
title | Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20rubusoside%20from%20stevioside%20by%20using%20a%20thermostable%20lactase%20from%20Thermus%20thermophilus%20and%20solubility%20enhancement%20of%20liquiritin%20and%20teniposide&rft.jtitle=Enzyme%20and%20microbial%20technology&rft.au=Nguyen,%20Thi%20Thanh%20Hanh&rft.date=2014-10-01&rft.volume=64-65&rft.spage=38&rft.epage=43&rft.pages=38-43&rft.issn=0141-0229&rft.eissn=1879-0909&rft_id=info:doi/10.1016/j.enzmictec.2014.07.001&rft_dat=%3Cproquest_cross%3E1660401313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660401313&rft_id=info:pmid/25152415&rft_els_id=S0141022914001240&rfr_iscdi=true |