Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide

•The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enzyme and microbial technology 2014-10, Vol.64-65, p.38-43
Hauptverfasser: Nguyen, Thi Thanh Hanh, Jung, Seung-Jin, Kang, Hee-Kyoung, Kim, Young-Min, Moon, Young-Hwan, Kim, Misook, Kim, Doman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue
container_start_page 38
container_title Enzyme and microbial technology
container_volume 64-65
creator Nguyen, Thi Thanh Hanh
Jung, Seung-Jin
Kang, Hee-Kyoung
Kim, Young-Min
Moon, Young-Hwan
Kim, Misook
Kim, Doman
description •The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysis of the increased water solubility of liquiritin and of teniposide using rubusoside. Solubility is an important factor for achieving the desired plasma level of drug for pharmacological response. About 40% of drugs are not soluble in water in practice and therefore are slowly absorbed, which results in insufficient and uneven bioavailability and GI toxicity. Rubusoside (Ru) is a sweetener component in herbal tea and was discovered to enhance the solubility of a number of pharmaceutically and medicinally important compounds, including anticancer compounds. In this study, thirty-one hydrolyzing enzymes were screened for the conversion of stevioside (Ste) to Ru. Recombinant lactase from Thermus thermophiles which was expressed in Escherichia coli converted stevioside to rubusoside as a main product. Immobilized lactase was prepared and used for the production of rubusoside; twelve reaction cycles were repeated with 95.4% of Ste hydrolysis and 49gL−1 of Ru was produced. The optimum rubusoside synthesis yield was 86% at 200gL−1, 1200U lactase. The purified 10% rubusoside solution showed increased water solubility of liquiritin from 0.98mgmL−1 to 4.70±0.12mgmL−1 and 0mgmL−1 to 3.42±0.11mgmL−1 in the case of teniposide.
doi_str_mv 10.1016/j.enzmictec.2014.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660401313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141022914001240</els_id><sourcerecordid>1660401313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-172e5daf632378d874c182b2350fa776243d380510a371b2d9436f9b71ee7aee3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhL4CPXBL8lTg5VhXQSpXgUM6WY09YrxJ7649K25_Cr8XbXXrlNHo1z8yrmRehT5S0lND-y64F_7Q6k8G0jFDREtkSQl-hDR3k2JCRjK_RpjZoQxgbL9C7lHakEkKQt-iCdbRjgnYb9OdnDLaY7ILHYcaxTCWF5CzgOYYVpwyP7qSnAy7J-d9Y47yFuIaU9bQAXrTJOp35-2OnpDOx37qlCu0tTmEpk1tcPmDwW-0NrODz0XJxD8VFl51_BjN4t392fI_ezHpJ8OFcL9Gvb1_vr2-aux_fb6-v7hojiMgNlQw6q-eeMy4HO0hh6MAmxjsyayl7JrjlA-ko0VzSidlR8H4eJ0kBpAbgl-jzae8-hocCKavVJQPLoj2EkhTteyII5ZRXVJ5QE0NKEWa1j27V8aAoUcdg1E69BKOOwSgiVX17nfx4NinTCvZl7l8SFbg6AVBPfXQQVTIO6p-si2CyssH91-QvVVmngQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660401313</pqid></control><display><type>article</type><title>Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Nguyen, Thi Thanh Hanh ; Jung, Seung-Jin ; Kang, Hee-Kyoung ; Kim, Young-Min ; Moon, Young-Hwan ; Kim, Misook ; Kim, Doman</creator><creatorcontrib>Nguyen, Thi Thanh Hanh ; Jung, Seung-Jin ; Kang, Hee-Kyoung ; Kim, Young-Min ; Moon, Young-Hwan ; Kim, Misook ; Kim, Doman</creatorcontrib><description>•The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysis of the increased water solubility of liquiritin and of teniposide using rubusoside. Solubility is an important factor for achieving the desired plasma level of drug for pharmacological response. About 40% of drugs are not soluble in water in practice and therefore are slowly absorbed, which results in insufficient and uneven bioavailability and GI toxicity. Rubusoside (Ru) is a sweetener component in herbal tea and was discovered to enhance the solubility of a number of pharmaceutically and medicinally important compounds, including anticancer compounds. In this study, thirty-one hydrolyzing enzymes were screened for the conversion of stevioside (Ste) to Ru. Recombinant lactase from Thermus thermophiles which was expressed in Escherichia coli converted stevioside to rubusoside as a main product. Immobilized lactase was prepared and used for the production of rubusoside; twelve reaction cycles were repeated with 95.4% of Ste hydrolysis and 49gL−1 of Ru was produced. The optimum rubusoside synthesis yield was 86% at 200gL−1, 1200U lactase. The purified 10% rubusoside solution showed increased water solubility of liquiritin from 0.98mgmL−1 to 4.70±0.12mgmL−1 and 0mgmL−1 to 3.42±0.11mgmL−1 in the case of teniposide.</description><identifier>ISSN: 0141-0229</identifier><identifier>EISSN: 1879-0909</identifier><identifier>DOI: 10.1016/j.enzmictec.2014.07.001</identifier><identifier>PMID: 25152415</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacokinetics ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological Availability ; Diterpenes, Kaurane - biosynthesis ; Diterpenes, Kaurane - metabolism ; Diterpenes, Kaurane - pharmacology ; Enzyme Stability ; Enzymes, Immobilized - genetics ; Enzymes, Immobilized - metabolism ; Escherichia coli ; Flavanones - chemistry ; Flavanones - pharmacokinetics ; Glucosides - biosynthesis ; Glucosides - chemistry ; Glucosides - metabolism ; Glucosides - pharmacokinetics ; Glucosides - pharmacology ; Humans ; Immobilized lactase ; Industrial Microbiology ; Lactase - genetics ; Lactase - metabolism ; Liquiritin ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Rubusoside ; Solubility - drug effects ; Sweetening Agents - metabolism ; Sweetening Agents - pharmacology ; Temperature ; Teniposide ; Teniposide - chemistry ; Teniposide - pharmacokinetics ; Thermus ; Thermus thermophilus ; Thermus thermophilus - enzymology ; Thermus thermophilus - genetics</subject><ispartof>Enzyme and microbial technology, 2014-10, Vol.64-65, p.38-43</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-172e5daf632378d874c182b2350fa776243d380510a371b2d9436f9b71ee7aee3</citedby><cites>FETCH-LOGICAL-c404t-172e5daf632378d874c182b2350fa776243d380510a371b2d9436f9b71ee7aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enzmictec.2014.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25152415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Thi Thanh Hanh</creatorcontrib><creatorcontrib>Jung, Seung-Jin</creatorcontrib><creatorcontrib>Kang, Hee-Kyoung</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Moon, Young-Hwan</creatorcontrib><creatorcontrib>Kim, Misook</creatorcontrib><creatorcontrib>Kim, Doman</creatorcontrib><title>Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide</title><title>Enzyme and microbial technology</title><addtitle>Enzyme Microb Technol</addtitle><description>•The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysis of the increased water solubility of liquiritin and of teniposide using rubusoside. Solubility is an important factor for achieving the desired plasma level of drug for pharmacological response. About 40% of drugs are not soluble in water in practice and therefore are slowly absorbed, which results in insufficient and uneven bioavailability and GI toxicity. Rubusoside (Ru) is a sweetener component in herbal tea and was discovered to enhance the solubility of a number of pharmaceutically and medicinally important compounds, including anticancer compounds. In this study, thirty-one hydrolyzing enzymes were screened for the conversion of stevioside (Ste) to Ru. Recombinant lactase from Thermus thermophiles which was expressed in Escherichia coli converted stevioside to rubusoside as a main product. Immobilized lactase was prepared and used for the production of rubusoside; twelve reaction cycles were repeated with 95.4% of Ste hydrolysis and 49gL−1 of Ru was produced. The optimum rubusoside synthesis yield was 86% at 200gL−1, 1200U lactase. The purified 10% rubusoside solution showed increased water solubility of liquiritin from 0.98mgmL−1 to 4.70±0.12mgmL−1 and 0mgmL−1 to 3.42±0.11mgmL−1 in the case of teniposide.</description><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Availability</subject><subject>Diterpenes, Kaurane - biosynthesis</subject><subject>Diterpenes, Kaurane - metabolism</subject><subject>Diterpenes, Kaurane - pharmacology</subject><subject>Enzyme Stability</subject><subject>Enzymes, Immobilized - genetics</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Escherichia coli</subject><subject>Flavanones - chemistry</subject><subject>Flavanones - pharmacokinetics</subject><subject>Glucosides - biosynthesis</subject><subject>Glucosides - chemistry</subject><subject>Glucosides - metabolism</subject><subject>Glucosides - pharmacokinetics</subject><subject>Glucosides - pharmacology</subject><subject>Humans</subject><subject>Immobilized lactase</subject><subject>Industrial Microbiology</subject><subject>Lactase - genetics</subject><subject>Lactase - metabolism</subject><subject>Liquiritin</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Rubusoside</subject><subject>Solubility - drug effects</subject><subject>Sweetening Agents - metabolism</subject><subject>Sweetening Agents - pharmacology</subject><subject>Temperature</subject><subject>Teniposide</subject><subject>Teniposide - chemistry</subject><subject>Teniposide - pharmacokinetics</subject><subject>Thermus</subject><subject>Thermus thermophilus</subject><subject>Thermus thermophilus - enzymology</subject><subject>Thermus thermophilus - genetics</subject><issn>0141-0229</issn><issn>1879-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhL4CPXBL8lTg5VhXQSpXgUM6WY09YrxJ7649K25_Cr8XbXXrlNHo1z8yrmRehT5S0lND-y64F_7Q6k8G0jFDREtkSQl-hDR3k2JCRjK_RpjZoQxgbL9C7lHakEkKQt-iCdbRjgnYb9OdnDLaY7ILHYcaxTCWF5CzgOYYVpwyP7qSnAy7J-d9Y47yFuIaU9bQAXrTJOp35-2OnpDOx37qlCu0tTmEpk1tcPmDwW-0NrODz0XJxD8VFl51_BjN4t392fI_ezHpJ8OFcL9Gvb1_vr2-aux_fb6-v7hojiMgNlQw6q-eeMy4HO0hh6MAmxjsyayl7JrjlA-ko0VzSidlR8H4eJ0kBpAbgl-jzae8-hocCKavVJQPLoj2EkhTteyII5ZRXVJ5QE0NKEWa1j27V8aAoUcdg1E69BKOOwSgiVX17nfx4NinTCvZl7l8SFbg6AVBPfXQQVTIO6p-si2CyssH91-QvVVmngQ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Nguyen, Thi Thanh Hanh</creator><creator>Jung, Seung-Jin</creator><creator>Kang, Hee-Kyoung</creator><creator>Kim, Young-Min</creator><creator>Moon, Young-Hwan</creator><creator>Kim, Misook</creator><creator>Kim, Doman</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20141001</creationdate><title>Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide</title><author>Nguyen, Thi Thanh Hanh ; Jung, Seung-Jin ; Kang, Hee-Kyoung ; Kim, Young-Min ; Moon, Young-Hwan ; Kim, Misook ; Kim, Doman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-172e5daf632378d874c182b2350fa776243d380510a371b2d9436f9b71ee7aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Availability</topic><topic>Diterpenes, Kaurane - biosynthesis</topic><topic>Diterpenes, Kaurane - metabolism</topic><topic>Diterpenes, Kaurane - pharmacology</topic><topic>Enzyme Stability</topic><topic>Enzymes, Immobilized - genetics</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Escherichia coli</topic><topic>Flavanones - chemistry</topic><topic>Flavanones - pharmacokinetics</topic><topic>Glucosides - biosynthesis</topic><topic>Glucosides - chemistry</topic><topic>Glucosides - metabolism</topic><topic>Glucosides - pharmacokinetics</topic><topic>Glucosides - pharmacology</topic><topic>Humans</topic><topic>Immobilized lactase</topic><topic>Industrial Microbiology</topic><topic>Lactase - genetics</topic><topic>Lactase - metabolism</topic><topic>Liquiritin</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Rubusoside</topic><topic>Solubility - drug effects</topic><topic>Sweetening Agents - metabolism</topic><topic>Sweetening Agents - pharmacology</topic><topic>Temperature</topic><topic>Teniposide</topic><topic>Teniposide - chemistry</topic><topic>Teniposide - pharmacokinetics</topic><topic>Thermus</topic><topic>Thermus thermophilus</topic><topic>Thermus thermophilus - enzymology</topic><topic>Thermus thermophilus - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thi Thanh Hanh</creatorcontrib><creatorcontrib>Jung, Seung-Jin</creatorcontrib><creatorcontrib>Kang, Hee-Kyoung</creatorcontrib><creatorcontrib>Kim, Young-Min</creatorcontrib><creatorcontrib>Moon, Young-Hwan</creatorcontrib><creatorcontrib>Kim, Misook</creatorcontrib><creatorcontrib>Kim, Doman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Enzyme and microbial technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thi Thanh Hanh</au><au>Jung, Seung-Jin</au><au>Kang, Hee-Kyoung</au><au>Kim, Young-Min</au><au>Moon, Young-Hwan</au><au>Kim, Misook</au><au>Kim, Doman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide</atitle><jtitle>Enzyme and microbial technology</jtitle><addtitle>Enzyme Microb Technol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>64-65</volume><spage>38</spage><epage>43</epage><pages>38-43</pages><issn>0141-0229</issn><eissn>1879-0909</eissn><abstract>•The expression and biochemical characterization of recombinant thermostable lactase from Thermus thermophiles in Escherichia coli.•Examined the conversion of stevioside to rubusoside using thirty-one enzymes.•Immobilized lactase preparation and optimization for the production of rubusoside.•Analysis of the increased water solubility of liquiritin and of teniposide using rubusoside. Solubility is an important factor for achieving the desired plasma level of drug for pharmacological response. About 40% of drugs are not soluble in water in practice and therefore are slowly absorbed, which results in insufficient and uneven bioavailability and GI toxicity. Rubusoside (Ru) is a sweetener component in herbal tea and was discovered to enhance the solubility of a number of pharmaceutically and medicinally important compounds, including anticancer compounds. In this study, thirty-one hydrolyzing enzymes were screened for the conversion of stevioside (Ste) to Ru. Recombinant lactase from Thermus thermophiles which was expressed in Escherichia coli converted stevioside to rubusoside as a main product. Immobilized lactase was prepared and used for the production of rubusoside; twelve reaction cycles were repeated with 95.4% of Ste hydrolysis and 49gL−1 of Ru was produced. The optimum rubusoside synthesis yield was 86% at 200gL−1, 1200U lactase. The purified 10% rubusoside solution showed increased water solubility of liquiritin from 0.98mgmL−1 to 4.70±0.12mgmL−1 and 0mgmL−1 to 3.42±0.11mgmL−1 in the case of teniposide.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25152415</pmid><doi>10.1016/j.enzmictec.2014.07.001</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-0229
ispartof Enzyme and microbial technology, 2014-10, Vol.64-65, p.38-43
issn 0141-0229
1879-0909
language eng
recordid cdi_proquest_miscellaneous_1660401313
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacokinetics
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Availability
Diterpenes, Kaurane - biosynthesis
Diterpenes, Kaurane - metabolism
Diterpenes, Kaurane - pharmacology
Enzyme Stability
Enzymes, Immobilized - genetics
Enzymes, Immobilized - metabolism
Escherichia coli
Flavanones - chemistry
Flavanones - pharmacokinetics
Glucosides - biosynthesis
Glucosides - chemistry
Glucosides - metabolism
Glucosides - pharmacokinetics
Glucosides - pharmacology
Humans
Immobilized lactase
Industrial Microbiology
Lactase - genetics
Lactase - metabolism
Liquiritin
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Rubusoside
Solubility - drug effects
Sweetening Agents - metabolism
Sweetening Agents - pharmacology
Temperature
Teniposide
Teniposide - chemistry
Teniposide - pharmacokinetics
Thermus
Thermus thermophilus
Thermus thermophilus - enzymology
Thermus thermophilus - genetics
title Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20rubusoside%20from%20stevioside%20by%20using%20a%20thermostable%20lactase%20from%20Thermus%20thermophilus%20and%20solubility%20enhancement%20of%20liquiritin%20and%20teniposide&rft.jtitle=Enzyme%20and%20microbial%20technology&rft.au=Nguyen,%20Thi%20Thanh%20Hanh&rft.date=2014-10-01&rft.volume=64-65&rft.spage=38&rft.epage=43&rft.pages=38-43&rft.issn=0141-0229&rft.eissn=1879-0909&rft_id=info:doi/10.1016/j.enzmictec.2014.07.001&rft_dat=%3Cproquest_cross%3E1660401313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660401313&rft_id=info:pmid/25152415&rft_els_id=S0141022914001240&rfr_iscdi=true